Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 9, 8935-8948, 2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
27 Nov 2009
Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models
C. Cagnazzo1, E. Manzini1,2, N. Calvo3, A. Douglass4, H. Akiyoshi5, S. Bekki6, M. Chipperfield7, M. Dameris8, M. Deushi9, A. M. Fischer10,*, H. Garny8, A. Gettelman11, M. A. Giorgetta12, D. Plummer13, E. Rozanov10,15, T. G. Shepherd14, K. Shibata9, A. Stenke8, H. Struthers16,**, and W. Tian7 1Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
2Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
3Dpto. Fisica de la Tierra II, Universidad Complutense de Madrid, Spain
4NASA Goddard Space Flight Center, Greenbelt MD, USA
5National Institute for Environmental Studies, Tsukuba, Japan
6Service d'Aeronomie du CNRS, IPSL, Paris, France
7School of Earth and Environment, University of Leeds, Leeds, UK
8DLR-Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
9Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan
10Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
11National Center for Atmospheric Research, Boulder, Colorado, USA
12Max Planck Institute for Meteorology, Hamburg, Germany
13Environment Canada, Toronto, Ontario, Canada
14Department of Physics, University of Toronto, Toronto, Ontario, Canada
15Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland
16National Institute of Water & Atmospheric Research, Auckland, New Zealand
*now at: Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland
**now at: ITM – Stockholms universitet, Stockholms, Sweden
Abstract. The connection between the El Niño Southern Oscillation (ENSO) and the Northern polar stratosphere has been established from observations and atmospheric modeling. Here a systematic inter-comparison of the sensitivity of the modeled stratosphere to ENSO in Chemistry Climate Models (CCMs) is reported. This work uses results from a number of the CCMs included in the 2006 ozone assessment. In the lower stratosphere, the mean of all model simulations reports a warming of the polar vortex during strong ENSO events in February–March, consistent with but smaller than the estimate from satellite observations and ERA40 reanalysis. The anomalous warming is associated with an anomalous dynamical increase of column ozone north of 70° N that is accompanied by coherent column ozone decrease in the Tropics, in agreement with that deduced from the NIWA column ozone database, implying an increased residual circulation in the mean of all model simulations during ENSO. The spread in the model responses is partly due to the large internal stratospheric variability and it is shown that it crucially depends on the representation of the tropospheric ENSO teleconnection in the models.

Citation: Cagnazzo, C., Manzini, E., Calvo, N., Douglass, A., Akiyoshi, H., Bekki, S., Chipperfield, M., Dameris, M., Deushi, M., Fischer, A. M., Garny, H., Gettelman, A., Giorgetta, M. A., Plummer, D., Rozanov, E., Shepherd, T. G., Shibata, K., Stenke, A., Struthers, H., and Tian, W.: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models, Atmos. Chem. Phys., 9, 8935-8948,, 2009.
Publications Copernicus