Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 9, issue 21 | Copyright

Special issue: The IASI instrument onboard the METOP satellite: first...

Atmos. Chem. Phys., 9, 8317-8330, 2009
https://doi.org/10.5194/acp-9-8317-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  03 Nov 2009

03 Nov 2009

Carbon monoxide distributions from the IASI/METOP mission: evaluation with other space-borne remote sensors

M. George1, C. Clerbaux1, D. Hurtmans2, S. Turquety1,*, P.-F. Coheur2, M. Pommier1, J. Hadji-Lazaro1, D. P. Edwards3, H. Worden3, M. Luo4, C. Rinsland5, and W. McMillan6 M. George et al.
  • 1UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, LATMOS-IPSL, Paris, France
  • 2Spectroscopie de l'Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), Brussels, Belgium
  • 3Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA
  • 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
  • 5NASA Langley Research Center, Hampton, Virginia, USA
  • 6Center for Satellite Applications and Research, National Environmental Satellite, Data and Information Service, NOAA, Camp Springs, Maryland, USA
  • *now at: UPMC Univ. Paris 06; LMD/IPSL, Ecole Polytechnique, Palaiseau, France

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp satellite measures carbon monoxide (CO) on a global scale, twice a day. CO total columns and vertical profiles are retrieved in near real time from the nadir radiance spectra measured by the instrument in the thermal infrared (TIR) spectral range. This paper describes the measurement vertical sensitivity and provides a first assessment of the capabilities of IASI to measure CO distributions. On the global scale, 0.8 to 2.4 independent pieces of information are available for the retrieval. At mid latitudes, the information ranges between 1.5 and 2, which enables the lower and upper troposphere to be distinguished, especially when thermal contrast is significant. Global distributions of column CO are evaluated with correlative observations available from other nadir looking TIR missions currently in operation: the Measurements of Pollution in the Troposphere (MOPITT) onboard TERRA, the Atmospheric Infrared Sounder (AIRS) onboard AQUA and the Tropospheric Emission Spectrometer (TES) onboard AURA. The IASI CO columns are compared with MOPITT, AIRS and TES CO columns, adjusted with the a priori, for three different months: August 2008, November 2008 and February 2009. On average, total column discrepancies of about 7% are found between IASI and the three other sounders in the Northern Hemisphere and in the equatorial region. However when strong CO concentrations are present, such as during fire events, these discrepancies can climb as high as 17%. Instrument specifications of IASI versus other missions are also discussed.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share