Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 9, issue 16 | Copyright
Atmos. Chem. Phys., 9, 6109-6118, 2009
https://doi.org/10.5194/acp-9-6109-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  25 Aug 2009

25 Aug 2009

The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions

M. M. Joshi1 and G. S. Jones2 M. M. Joshi and G. S. Jones
  • 1NCAS Climate, University of Reading, UK
  • 2Hadley Centre for Climate Change, Met Office, UK

Abstract. We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.

Download & links
Publications Copernicus
Download
Citation
Share