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Abstract. This study presents a comprehensive ice cloud for-
mation parameterization that computes the ice crystal num-
ber, size distribution, and maximum supersaturation from
precursor aerosol and ice nuclei. The parameterization pro-
vides an analytical solution of the cloud parcel model equa-
tions and accounts for the competition effects between homo-
geneous and heterogeneous freezing, and, between heteroge-
neous freezing in different modes. The diversity of hetero-
geneous nuclei is described through a nucleation spectrum
function which is allowed to follow any form (i.e., derived
from classical nucleation theory or from observations). The
parameterization reproduces the predictions of a detailed nu-
merical parcel model over a wide range of conditions, and
several expressions for the nucleation spectrum. The average
error in ice crystal number concentration was−2.0±8.5%
for conditions of pure heterogeneous freezing, and, 4.7±21%
when both homogeneous and heterogeneous freezing were
active. The formulation presented is fast and free from re-
quirements of numerical integration.

1 Introduction

Ice clouds play a key role in rain production (e.g., Lau and
Wu, 2003), heterogeneous chemistry (Peter, 1997), strato-
spheric water vapor circulation (Hartmann et al., 2001), and
the radiative balance of the Earth (Liou, 1986). Representa-
tion of ice clouds in climate and weather prediction models
remains a challenge due to the limited understanding of ice
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cloud formation processes (e.g., Lin et al., 2002; Baker and
Peter, 2008), and the difficulties associated with the remote
sensing of ice clouds (Waliser et al., 2009). Anthropogenic
activities can potentially influence ice cloud formation and
evolution by altering the concentration and composition of
precursor aerosols (Seinfeld, 1998; Penner et al., 1999; Min-
nis, 2004; K̈archer et al., 2007), which may result in a poten-
tially important indirect effect (e.g., K̈archer and Lohmann,
2003), the sign and magnitude of which however is highly
uncertain.

Ice clouds form by homogeneous freezing of liquid
droplets or heterogeneous freezing upon ice nuclei, (IN)
(e.g., Pruppacher and Klett, 1997). Observational data show
that the two freezing mechanisms are likely to interact dur-
ing cloud formation (DeMott et al., 2003a, b; Haag et al.,
2003b; Prenni et al., 2007); their relative contribution is how-
ever a strong function of IN, aerosol concentration, and cloud
formation conditions (Gierens, 2003; Kärcher et al., 2006;
Barahona and Nenes, 2009). IN tend to freeze early during
cloud formation, depleting water vapor supersaturation and
hindering the freezing of IN with high freezing thresholds
and the homogeneous freezing of liquid droplets (e.g., De-
Mott et al., 1997; Koop et al., 2000). Although numerous
aerosol species have been identified as active IN, dust, soot,
and organic particles are thought to be the most relevant for
the atmosphere (DeMott et al., 2003a; Sassen et al., 2003;
Archuleta et al., 2005; M̈ohler et al., 2005; Field et al., 2006;
Kanji et al., 2008; Phillips et al., 2008). Assessment of the
indirect effect resulting from perturbations in the background
concentrations of IN requires a proper characterization of the
spatial distribution of potential IN species and their freez-
ing efficiencies (i.e., the aerosol freezing fraction). The large
uncertainty in ice cloud indirect forcing is associated with
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incomplete understanding of these factors which is evident
by the large predictive uncertainty of aerosol-cloud parame-
terizations (Phillips et al., 2008; Eidhammer et al., 2009).

Several approaches have been proposed to parameterize
ice cloud formation in atmospheric models. Empirical cor-
relations derived from field campaigns are most often em-
ployed to express IN concentrations (e.g., Meyers et al.,
1992; DeMott et al., 1998) as a function of temperature,
T , and supersaturation over ice,si . These expressions are
simple but only provide the availability of IN over a limited
spatial region. A more comprehensive expression was de-
veloped by Phillips et al. (2008), who combined data from
several field campaigns to estimate the contribution of indi-
vidual aerosol species to the total IN concentration.

Empirical parameterizations are incomplete, as they pro-
vide only IN concentrations. Calculation of ice crystal num-
ber concentration,Nc, requires the knowledge of cloud su-
persaturation and therefore the usage of a dynamical frame-
work. Liu and Penner (2005) considered this, and used nu-
merical solutions from a cloud parcel model to correlateNc

to cloud formation conditions (i.e.,T , p, V ) and the num-
ber concentration of individual aerosol species (dust, soot,
and sulfate). Although a computationally efficient approach,
these correlations are restricted to (largely unconstrained) as-
sumptions regarding the nature of freezing (i.e., the estima-
tion of freezing efficiencies), the size distributions of dust,
soot, and sulfate, the mass transfer (i.e., deposition) coeffi-
cient of water vapor onto crystals, and, the active freezing
mechanisms. K̈archer et al. (2006) proposed a physically
based approach to parameterize cirrus cloud formation com-
bining solutions for the pure homogeneous freezing (Kärcher
and Lohmann, 2002b), and heterogeneous freezing (Kärcher
and Lohmann, 2003) into a numerical scheme. Although this
approach includes all known relevant factors that determine
Nc, it may be computationally intensive; thus, its applica-
tion is limited to cases where IN can be characterized by a
few, well defined, freezing thresholds. Even if many cases
of atmospheric aerosol can be described this way, it may not
be adequate, as even single class aerosol populations usually
exhibit a distribution of freezing thresholds (e.g., Meyers et
al., 1992; M̈ohler et al., 2006; Marcolli et al., 2007; Kanji
et al., 2008; Phillips et al., 2008; Vali, 2008; Welti et al.,
2009). Barahona and Nenes (2009) developed an analytical
parameterization that combines homogeneous and heteroge-
neous freezing within a single expression. Although very
fast and with low error (6±33%), this approach is limited
to cases where the IN population can be characterized by a
single freezing threshold.

This work presents a new physically-based, analytical
and computationally efficient framework to parameterize ice
cloud formation. The new scheme allows the usage of
both empirical and theoretical IN data in a simple dynam-
ical framework, and can consider the spectral variability
in aerosol and IN composition. The new parameterization
builds upon the frameworks of Barahona and Nenes (2008,

2009) that combine homogeneous and heterogeneous mech-
anisms of ice formation, and explicitly resolves the depen-
dency ofNc on conditions of cloud formation (i.e.,T , p, V ),
aerosol number and size, and the freezing characteristics of
the IN.

2 Description of the ice nucleation spectrum

Modeling of ice cloud formation requires a function de-
scribing the number concentration of crystals frozen from an
aerosol population (i.e., the aerosol freezing fraction) at some
temperature,T , and supersaturation,si . The function, known
as the “nucleation spectrum”, is closely related to the nu-
cleation rate coefficient,J , and the freezing probability,Pf .
Theoretical studies (e.g., Lin et al., 2002; Khvorostyanov and
Curry, 2009) and laboratory experiments (e.g., Tabazadeh et
al., 1997a; Koop et al., 2000; Hung et al., 2002; Haag et al.,
2003a, b) suggest thatJ becomes substantially large around
some thresholdT andsi (Pruppacher and Klett, 1997). De-
creasingT (or increasingsi) beyond this level exponentially
increasesJ so that (unlesssi is depleted by water vapor depo-
sition onto growing ice crystals) the probability of freezing,
Pf eventually becomes unity (Pruppacher and Klett, 1997;
Lin et al., 2002; Khvorostyanov and Curry, 2004; Monier
et al., 2006; Barahona and Nenes, 2008). Observations
have confirmed this for homogeneous freezing of aqueous
droplets, where the thresholdsi andT is confined within a
very narrow range of values (Heymsfield and Sabin, 1989;
DeMott et al., 1994; Pruppacher and Klett, 1997; Tabazadeh
et al., 1997b; Chen et al., 2000; Cziczo and Abbatt, 2001;
Khvorostyanov and Curry, 2004) and depends primarily on
the water activity within the liquid phase (Koop et al., 2000).

Heterogeneous freezing is different from homogeneous
freezing in that it exhibits a broad range of freezing thresh-
olds, even for aerosol of the same type (e.g., Pruppacher and
Klett, 1997; Zuberi et al., 2002; Archuleta et al., 2005; Ab-
batt et al., 2006; Field et al., 2006; M̈ohler et al., 2006;
Marcolli et al., 2007; Eastwood et al., 2008; Kanji et al.,
2008; Khvorostyanov and Curry, 2009). Field campaign data
(Meyers et al., 1992; DeMott et al., 1998) and laboratory
studies (Field et al., 2006; M̈ohler et al., 2006; Zobrist et
al., 2008; Welti et al., 2009) show that forsi values larger
than the thresholdsi , the aerosol freezing fraction (i.e.,Pf )

is below unity, increasing withsi much more slowly than
suggested by theory (e.g., Khvorostyanov and Curry, 2005;
Phillips et al., 2008; Eidhammer et al., 2009). This dis-
crepancy can be reconciled by assuming that the heteroge-
neous nucleation rate depends on the local conditions adja-
cent to individual nucleation sites, rather than on the aver-
age characteristics of the aerosol population (i.e., the “singu-
lar hypothesis” (e.g., Fletcher, 1969; Vali, 1994)). Freez-
ing occurs instantaneously when a thresholdsi and T as-
sociated with a nucleation site are reached; thus a distribu-
tion of active nucleation sites on the aerosol particles would
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Table 1. Cumulative freezing spectra considered in this study. The functionsHsoot(si , T ) andHdust(si , T ) for PDA08 are defined in Phillips
et al. (2008).

Spectrum Nhet(si) (m−3)

Meyers et al. (1992), MY92 103e−0.639+12.96si

Phillips et al. (2007), PDG07
60e−0.639+12.96si 243<T <268
103e−0.388+3.88si 190<T ≤243

Phillips et al. (2008), PDA08
Ndust

[
1− exp

(
−

2
3Hdust(si , T )

Nhet,PDG07

7.92×104

)]
+Nsoot

[
1− exp

(
−

1
3Hsoot(si , T )

Nhet,PDG07

1.04×106

)]
Classical Nucleation Theory (Sect. 2.2), CNT

0.05
[
min

(
si
0.2Nduste

−0.0011khom(0.2−si ), Ndust

)
+

min
(

si
0.3Nsoote

−0.039khom(0.3−si ), Nsoot

)]

result in a distribution of freezing thresholds (Marcolli et al.,
2007; Zobrist et al., 2007; Vali, 2008; Eidhammer et al.,
2009; Khvorostyanov and Curry, 2009). The aerosol freez-
ing fraction is then related to the density of active nucleation
sites (which generally depends on particle history and chem-
ical composition (Pruppacher and Klett, 1997; Abbatt et al.,
2006)) and to the surface area and number concentration of
the aerosol population. Vali (1994, 2008) have argued that
Pf <1 for each active nucleation site, which may arise if the
active sites exhibit transient activity; this implies a tempo-
ral dependency ofPf which is however second order on the
freezing threshold distribution (Vali, 2008; Khvorostyanov
and Curry, 2009).

Experimental studies and field campaign data (e.g.,
Möhler et al., 2006; Phillips et al., 2008) show that at con-
stantT , the aerosol freezing fraction is well represented by a
continuous function ofsi , which results from the diversity of
active nucleation sites that may be available in the insoluble
aerosol population (Pruppacher and Klett, 1997). If sufficient
time is allowed so that transient effects vanish (i.e.,Pf is at
its maximum), then the “nucleation spectrum” can be defined
as,

ns(si, T , p, ...) =
∂Nhet(si, T , p, ...)

∂si

∣∣∣∣
T ,p,...

(1)

whereNhet(si, T , p, ...) is the crystal number concentration
produced by heterogeneous freezing. The subscripts on the
right hand side of Eq. (1) indicate that all other state variables
(T , p, aerosol concentrations) remain constant when the
nucleation spectrum is measured or computed with theory.
Therefore, for the remainder of this study,Nhet(si, T , p, ...)

is represented asNhet(si) (ns(si) in its differential form), as-
suming an implicit dependency on other state variables.

2.1 Empirical IN spectra

Developing an ice formation parameterization requires the
knowledge of the IN nucleation spectrum in its differential
ns(si), or cumulative form,Nhet(si); these can be obtained

empirically from field campaign data (Meyers et al., 1992;
Phillips et al., 2008), laboratory experiments (e.g., Möhler
et al., 2006; Welti et al., 2009) or from nucleation theory
(Sect. 2.2). The simplest form forns(si) arises by assuming
that IN concentrations depend solely onsi ; characteristic ex-
amples are the formulations of Meyers et al. (1992, MY92,
Table 1) and the background spectrum of Phillips et al. (2007,
PDG07, Table 1). MY92 is derived from in-situ measure-
ments of IN concentrations forT between 250 and 266 K
andsi between 2 and 25%. PDG07 is derived from MY92
(after applying a scaling factor to account for the height de-
pendency of IN concentration) and the data of DeMott et
al. (2003a). A more comprehensive formulation, consider-
ing (in addition tosi and T ) the surface area contribution
from different aerosol types (i.e., dust, organic carbon, and
soot) and freezing modes (i.e., deposition and immersion),
was presented by Phillips et al. (2008, PDA08). PDA08 is
developed using IN and aerosol concentration measurements
from several field campaigns.

2.2 IN spectra from classical nucleation theory

Theoretical arguments can also be used to obtain an approx-
imate form for the nucleation spectrum. Classical nucle-
ation theory (CNT) suggests that the nucleation rate at two
si thresholds can be related as (Pruppacher and Klett, 1997;
Khvorostyanov and Curry, 2004)

J (si,1) ≈ J (si,2) exp
[
−k(T )(si,2 − si,1)

]
(2)

whereJ (si,1) andJ (si,2) are the nucleation rate coefficients
at si,1 and si,2, respectively;k(T ) is a proportionality con-
stant depending onT . Using this, Barahona and Nenes
(2008) showed that for pure homogeneous freezing the nu-
cleation spectrum,Nhom(si), can be approximated as,

Nhom(si)≈No

Jhom(shom)v̄o

αV khom

1

(shom+1)
exp[−khom(shom−si)]

(3)
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where Jhom(shom) is the homogenous nucleation rate co-
efficient at the homogeneous freezing threshold,shom;
No and v̄o are the number concentration and mean
volume of the droplet population, respectively, and
khom=(shom−si)

−1 ln Jhom(shom)
Jhom(si )

. Equation (3) can be ex-
tended to describe heterogeneous nucleation by replacing
khom with a heterogeneous nucleation analog,k(T ) (e.g.,
Pruppacher and Klett, 1997; Khvorostyanov and Curry,
2004, 2009),

k(T ) = khomfh (4)

wherefh≈
1
4

(
m3

−3m+2
)
, m= cos(θ) andθ is the IN-water

contact angle (Fletcher, 1959). Replacingkhom in Eq. (3)
with k(T ) from Eq. (4),shom with the heterogeneous freezing
threshold,sh,j , and, generalizing to an external mixture of
nspIN populations, we obtain

Nhet(si)≈
∑

j=1,nsp

min
{
ef,j Na,j exp

[
−khomfh,j (sh,j−si)

]
,

ef,j Na,j

}
(5)

wheresh,j is the freezing threshold of thej -th IN popula-
tion, and,Na,j is the corresponding aerosol number concen-
tration; sh,j is associated with the onset of large nucleation
rates at which the aerosol freezing fraction reaches a maxi-

mum.ef,j≈

[
C

Jh,j (sh,j )�̄j

αV k(T )
1

(sh,j +1)

]
is the freezing efficiency

of thej -th population, whereJh,j (sh,j ) is the heterogeneous
nucleation rate coefficient atsh,j , andC depends on the mean
surface area of thej -th aerosol population,̄�j .

Nucleation spectra based on CNT (and therefore on the
stochastic hypothesis (Pruppacher and Klett, 1997)) depend

on t , which is evident in Eq. (5) asef,j∝
J (sh,j )

V
. To be

consistent with Eq. (1), the temporal dependency in Eq. (5)
should vanish, which implies thatef,j 6=f (t). Assuming that
enough time is allowed for heterogeneous freezing during
IN measurements (used to constrain the parameters of CNT),
the stochastic component of CNT is small, and the resulting
nucleation spectra would practically be time-independent,
hence consistent with Eq. (1).

The exponential form of Eq. (5) is in agreement with ex-
perimental studies (e.g., M̈ohler et al., 2006). Equation (5)
however requires the knowledge ofef,j which in this study
is treated as an empirical parameter and used to constrain the
maximum freezing fraction of the aerosol population (in re-
ality, ef,j is a function ofT , aerosol composition and size,
and is analyzed in a companion study). Values foref,j , sh,j ,
and θj used in this study (Sect. 4.1, Table 1) are selected
from the literature. Complete characterization of the nucle-
ation spectra using nucleation theory requires the usage of
probability distributions forθj andsh,j (e.g., Marcolli et al.,
2007; Khvorostyanov and Curry, 2009). Although this can in
principle be included in Eq. (5), little is known on the formu-
lation of such probability distributions and is not considered
here.

3 Formulation of the parameterization

The parameterization is based on the framework of an as-
cending Lagrangian parcel. At any height during the parcel
ascent, supersaturation with respect to ice,si , develops and
the ice crystal size distribution is determined by heteroge-
neous freezing of IN, homogeneous freezing of droplets, and
growth of existing ice crystals. The solution when homoge-
neous freezing is the only mechanism active is presented in
Barahona and Nenes (2008). The general solution for pure
heterogeneous, and, combined homogeneous-heterogeneous
freezing is presented in the following sections.

3.1 The ice parcel equations

In the initial stages of cloud formationsi increases mono-
tonically due to cooling from expansion; growth of crystals,
frozen either homogeneously or heterogeneously, increas-
ingly depletes water vapor, up to some level wheresi reaches
a maximum,smax (because depletion balances thesi increase
from cooling). At any given time, the state of the cloud is de-
termined by the coupled system of equations (Barahona and
Nenes, 2009)

wi(t) =
ρi

ρa

π

6

∫
... (6)∫

X

D3
cnc(Dc, DIN, m1,...,nx, t)dDcdDINdm1,...,nx

dsi

dt
= αV (1 + si) − β

dwi

dt
(7)

dwi

dt
=

ρi

ρa

π

2

∫
... (8)∫

X

D2
c

dDc

dt
nc(Dc, DIN, m1,...,nx, t)dDcdDINdm1,...,nx

dDc

dt
=

si

01Dc + 02
(9)

where dwi

dt
is the rate of water vapor deposition on the

ice crystals andV is the updraft velocity. Dc and DIN
are the volume-equivalent diameter of the ice crystals and
IN, respectively (for homogeneous nucleation,DIN is re-
placed by the size of cloud droplets),m1,...,nx collec-
tively represents the mass fractions of thenx chemical
species present in the aerosol population (all other sym-
bols are defined in Appendix C).nc

(
Dc, DIN, m1,...,nx, t

)
is the number distribution of the ice crystals; therefore
nc(Dc, DIN, m1,...,nx, t)dDcdDINdm1,...,nx represents the
number concentration of ice crystals with sizes in the range
(Dc, Dc+dDc), made from an aerosol particle in the size
range(DIN, DIN+dDIN), and with composition defined by
the interval(m1,...,nx, m1,...,nx+dm1,...,nx). X in Eqs. (6) and
(8) is the domain of integration and spans over all the values
of Dc, DIN , andm1,...,nx for which nc(Dc, DIN, m1,...,nx, t)
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is defined. The calculation ofwi(t) and dwi

dt
requires the

knowledge ofnc(Dc, DIN, m1,...,nx, t), therefore an equation
describing the evolution ofnc(Dc, DIN, m1,...,nx, t) should
be added to Eqs. (7) to (9). The coupling betweennc, Dc,
andsi in Eqs. (7) to (9) precludes a closed analytical solution
and are numerically integrated (e.g., Lin et al., 2002, and ref-
erences therein; Monier et al., 2006; Barahona and Nenes,
2008).

The main parameter of interest resulting from the solu-
tion of Eqs. (7) to (9) is the ice crystal number concentra-
tion, Nc=Nhom+Nhet, whereNhom andNhet are the ice crys-
tal number concentrations from homogeneous and heteroge-
neous freezing, respectively.Nhom can be treated using the
analytical approach of Barahona and Nenes (2008), while
Nhet is equal to the IN that freeze, i.e.,Nhet at smax. There-
fore, determiningNc requires the computation ofsmax.

3.2 Determiningsmax and Nhet

smax andNhet are determined by solving for the supersatu-
ration that is a root of Eq. (7). This is turn is accomplished
by manipulating Eq. (7) so that the contribution of nucleation
and growth to the evolution of the ice crystal population is de-
coupled. The root is then analytically determined for freez-
ing of a monodisperse, chemically homogenous, ice crystal
population based on the approach of Barahona and Nenes
(2009). The monodisperse solution is then generalized for
a polydisperse, heterogeneous IN population by introducing
the characteristic freezing threshold and size of the ice crys-
tal population.

The size of ice crystals at any time after freezing and
growth is given by integration of Eq. (9), assuming negli-
gible non-continuum effects on mass transfer; i.e.,01�02
(Appendix B), and,dDc

dt
≈

si
01Dc

(Barahona and Nenes, 2008),

Dc(t, si) =

D2
IN +

1

01

si∫
s′
o

s

ds/dt
ds


1/2

(10)

whereDIN is the initial size of the ice crystals at the moment
of freezing, and,s′

o is their freezing threshold (Barahona
and Nenes, 2008), which depends on composition and size
(Sect. 2). A chemically-heterogeneous, polydisperse IN pop-
ulation can thus be treated as the superposition of monodis-
perse, chemically-homogeneous IN classes, each with their
respectives′

o; Eq. (10) can then be applied seperately to each
“IN class” of size and composition.

Equation (10) can be simplified assuming that

1
01

si∫
s′
o

s
ds/dt

ds�D2
IN , which means that the growth ex-

perienced by crystals beyond the point of freezing is much
larger than their initial size (e.g., K̈archer and Lohmann,
2002b; Nenes and Seinfeld, 2003; Khvorostyanov and
Curry, 2005; Monier et al., 2006; Barahona and Nenes,
2009), and is justified given that typical crystal sizes,

Dc>20µm, are much larger than the typicalDIN∼1µm
found in the upper troposphere (e.g., Heymsfield and Platt,
1984; Gayet et al., 2004). Equation (10) is further simplified
by considering that the thermodynamic driving force for
ice crystal growth (i.e., the difference betweensi and the
equilibrium supersaturation) is usually large (smax generally
above 20% (e.g., Lin et al., 2002; Haag et al., 2003b)). This
suggests that crystal growth rates would be limited by water
vapor mass transfer rather than bysi (confirmed by parcel
model simulations).Dc is therefore a strong function of the
crystal residence time in the parcel and weakly dependent
on si . The limits of the integral in Eq. (10) imply that the
crystal residence time is mainly a function of the difference
si−s′

o; Eq. (10) therefore can be rewritten as

Dc(t, si) ≈ Dc(si − s′
o) (11)

whereDc(si−s′
o) signifies thatDc is a function ofsi−s′

o.
Equations (1) and (11) suggest that Eq. (6) can be written

in terms ofsi ands′
o,

wi(si) =
π

6

ρi

ρa

si∫
0

D3
c (si − s′

o) ns(s
′
o) ds′

o

=
π

6

ρi

ρa

[
D3

c ⊗ ns

]
(si) (12)

where ⊗ represents the half-convolution product (Ap-
pendix A). Taking the derivative of Eq. (12) and substitution
into Eq. (7) gives,

dsi

dt
= αV (1 + si) − β

ρi

ρa

π

2

[
D2

c

dDc

dt
⊗ ns

]
(si) (13)

Equation (13) is a simplified supersaturation balance equa-
tion used in place of Eq. (7), the root of which (i.e.,dsi

dt
=0)

givessmax,

αV (1 + smax) = β
ρi

ρa

π

2

[
D2

c

dDc

dt
⊗ ns

]
(smax) (14)

D2
c

dDc

dt
, defined in Eq. (9), can be simplified us-

ing the approximation developed in Appendix B, i.e.,
D2

c smax
01Dc+02

≈
smax
01

Dc e
−

2
λsmax . Introducing Eq. (B6) into Eq. (14)

and rearranging gives,

αV 01

β
ρi

ρa

π
2

1 + smax

smax
e

2
λsmax = [Dc ⊗ ns ] (smax) (15)

Equation (15) holds regardless of the form ofns(si), and can
be applied to a monodisperse, chemically-homogeneous IN
population, for which all ice crystals freeze at a characteristic
threshold,schar. ns(si) is thus a delta function aboutschar,
δ (s−schar). Substitution into Eq. (15) gives

αV 01

β
ρi

ρa

π
2

1 + smax

smax
e

2
λsmax =

Nhet(smax)

smax∫
schar

Dc(smax − s)δ(s − schar)ds (16)
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Integration of Eq. (16) gives

αV 01

β
ρi

ρa

π
2

1 + smax

smax
e

2
λsmax = Nhet(smax)Dc(1schar) (17)

where1schar=smax−schar. Comparing Eqs. (15) and (17)
gives,

[Dc ⊗ ns ] (smax) = Nhet(smax)Dc(1schar) (18)

Equation (18) shows that the terms describing nucleation and
growth during the evolution of an ice crystal population can
be separated, or, the nucleation spectrum can be determined
independently of the dynamics of the parcel ascent. The
same conclusion can be obtained by applying Eq. (A5) to
Eq. (14), e.g.,
smax∫
0

[
D2

c

dDc

dt
⊗ ns

]
(s) ds =

=

 smax∫
0

ns(s)ds

  smax∫
0

D2
c

dDc

dt
ds


= Nhet(smax)

 smax∫
0

D2
c

dDc

dt
ds

 (19)

which shows that nucleation and growth can be decoupled
independently of the form ofD2

c
dDc

dt
.

Equation (18) is a version of the mean value theorem, and
physically means that the rate of change of surface area of
a polydisperse ice crystal population can be described us-
ing the monodisperse approximation, provided that a suitable
schar is defined. Equation (18) is a Volterra equation of the
first kind and can be solved analytically or numerically (e.g.,
Linz, 1985). For this, the functional form ofns(si) needs
to be known in advance. To keep the parameterization as
general as possible, an approximate solution is used instead.
Dc(1schar) is expected to be of the order of the largest ice
crystals in the population (since they dominate the ice crystal
population surface area). As these crystals grow slowly, their
size is to first order a linear function of1s=smax−si (Bara-
hona and Nenes, 2009). Therefore,Dc(1s) andDc(1schar)

are related by

Dc(1s) ≈ Dc(1schar)
1s

1schar
(20)

Substituting Eq. (20) into Eq. (18), we obtain,

[ns ⊗ 1s] (smax) = Nhet(smax)1schar (21)

which after taking the derivative with respect tosmax gives
(i.e., Eq. A6),∫ smax

0
ns(s)ds = ns(smax)1schar (22)

Application of Eq. (1) to Eq. (22), and rearranging, gives,

1schar =
Nhet(smax)

ns(smax)
(23)

If smax is large enough, all IN are frozen andns(smax)→0;
this can lead to numerical instability as1schar becomes very
large. However, a large1schar also implies that a significant
fraction of crystals freeze during the early stages of the parcel
ascent so that,schar→0; hence,1schar→smax andsmax is the
upper limit for1schar. With this, Eq. (23) becomes,

1schar = min

(
Nhet(smax)

ns(smax)
, smax

)
(24)

Dc(1schar) is calculated considering the growth of a
monodisperse population with freezing thresholdschar(Bara-
hona and Nenes, 2009),

Dc(1schar) =

√
21s∗

char

αV 01
(25)

with 1s∗

char=
1schar

[
4
31schar+2(smax−1schar)

]
(1+smax−1schar)

Final form for pure heterogeneous freezing

Nhet(smax) is calculated from combination of Eqs. (17) and
(25),

Nhet(smax)

N∗
=

1√
1s∗

char

(1 + smax)

smax
e

2
λ smax (26)

with N∗
=

√
2(αV 01)

3/2
(
β π

2
ρi

ρa

)−1
. Equation (26) is the

solution of thesi balance (Eq. 14) for pure heterogeneous
freezing and shows thatNhet(smax) depends only onsmax,
N∗, λ, and1schar. N∗ has dimensions of number concentra-
tion and represents the ratio of the rate of increase insi from
expansion cooling to the rate of increase in the surface area
of the crystal population.1schar is related to the steepness
of ns(si) aboutsmax; a value of1schar→0 implies that most
of the crystals freeze atsi close tosmax. λ accounts for non-
continuum effects; if the crystal concentration is low (∼less
than 0.01 cm−3) and1schar→smax, size effects onNhet(smax)

can usually be neglected. Equation (26) is solved along with
an expression forNhet(smax) to find smax (Sect. 3.4, Fig. 2).

3.3 Competition between homogeneous and heteroge-
neous freezing

At T below 235 K, ice clouds form primarily from homoge-
neous freezing (e.g., Heymsfield and Sabin, 1989; DeMott
et al., 2003a; Barahona and Nenes, 2009). If a significant
concentration of IN is present, freezing of IN prior to the on-
set of homogeneous nucleation may inhibit droplet freezing
(Gierens, 2003; Barahona and Nenes, 2009). Equations (7)
to (9) can be readily extended to account for this, for which
a generalized nucleation spectrum is defined that includes
contribution from homogeneous freezing of droplets. This is
simplified if taken into account that homogeneous nucleation
rates are very high, and, the nucleation spectrum is close to
being a delta function aboutsi=shom. Furthermore, since the
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number concentration of supercooled liquid droplets avail-
able for freezing is much greater than the concentration of
IN (i.e., No�Nhet), smax is reached soon after homogeneous
freezing is triggered (smax≈shom) (Kärcher and Lohmann,
2002a; Barahona and Nenes, 2008). IN freezing thresholds
are generally lower thanshom; homogeneous freezing can al-
ways be considered the last freezing step during ice cloud
formation.

As the growth of previously frozen crystals reduces the

rate of increase ofsi , (i.e., dsi
dt

∣∣∣
shom

), the presence of IN tends

to reduce the probability of homogeneous freezing and the
ice crystal concentration (compared to a pure homogeneous
freezing event). The droplet freezing fraction,fc, in the pres-

ence of IN is proportional to the decrease indsi
dt

∣∣∣
shom

(Bara-

hona and Nenes, 2009) from the presence of IN, i.e.,

fc = fc,hom

 dsi
dt

∣∣∣
shom

αV (shom + 1)


3/2

(27)

whereαV (shom+1) is an approximation todsi
dt

∣∣∣
shom

when

IN are not present, and,fc,hom is the droplet freezing frac-
tion under pure homogeneous conditions, given by Bara-
hona and Nenes (2008). Although Eq. (27) is derived for
a monodisperse IN population, Eq. (21) suggests that the ef-
fect of the polydisperse IN population can be expressed as
a monodisperse population, provided that a suitable charac-
teristic freezing threshold,schar, is defined. Extending the
monodisperse IN population solution (Barahona and Nenes,
2009) to a polydisperse aerosol gives,

dsi
dt

∣∣∣
shom

αV (shom + 1)
≈ 1 −

(
Nhet (shom)

Nlim

)3/2

(28)

whereNhet(shom) is calculated from the nucleation spectrum
function (Sect. 2), andNlim is the limiting IN concentra-
tion that completely inhibits homogeneous freezing (Bara-
hona and Nenes, 2009).

If Nhet(shom) is such thatsmax=shom, then all IN concen-
trations greater thanNhet(shom) would result insmax<shom
and prevent homogeneous freezing (i.e., heterogeneous
freezing would be the only mechanism forming crystals).
Conversely, if the IN concentration is lower thanNhet(shom)

andsmax>shom, homogeneous freezing is active. Thus,Nlim
must be equal toNhet(shom) atsmax=shom, and is obtained by
substitutingsmax=shom into Eq. (26), i.e.,

Nlim

N∗
=

1√
1s∗

char

∣∣
shom

(1 + shom)

shom
e

2
λ shom (29)

For very low Nhet, Eq. (27) approaches the pure homoge-
neous freezing limit as the effect of IN is negligible; ho-
mogeneous freezing is prevented forNhet(shom)≥Nlim and

fc≤0. Thus, combination of Eqs. (26) and (27) provides
the total crystal concentration,Nc, from the combined effects
of homogeneous and heterogeneous freezing (Barahona and
Nenes, 2009),

Nc =


Noe

−fc(1 − e−fc ) + Nhet(shom)

fc > 0 andT < 235 K

Nhet(smax)

fc ≤ 0 or T > 235 K

(30)

Equation (30) accounts for the fact that homogeneous freez-
ing is not probable forT >235 K (e.g., Pruppacher and Klett,
1997) and is applicable only for cases which the cloud re-
mains subsaturated with respect to liquid water (i.e., ice
cloud regime).

3.4 Implementation of the parameterization

The generalized parameterization presented in this study is
fairly simple to apply and outlined in Fig. 1. Inputs to the pa-
rameterization are cloud formation conditions (i.e.,p, T , V ),
liquid droplet and IN aerosol number concentration (i.e.,
No, Ndust, Nsoot). Additional inputs (i.e.,sh,j , θj ) may be
required depending on the expression used for the nucleation
spectrum,Nhet(si) . If T <235 K, the procedure is to cal-
culateNhet(shom), Nlim (Eq. 29) and thenfc (Eqs. 27 and
28). If fc>0, thenNc is given by the application of Eq. (30)
with fc,hom from Barahona and Nenes (2008). Iffc≤0 or
T >235 K, heterogeneous freezing is the only mechanism ac-
tive, andNc=Nhet(smax), obtained by numerically solving
Eq. (26). Alternatively, precalculated lookup tables or ap-
proximate explicit solutions to Eq. (26) can be used to avoid
iterative solutions.

4 Evaluation and discussion

The parameterization is tested for all the nucleation spectra
presented in Table 1. Only dust and black carbon aerosol
is considered, as the contribution of organic carbon to the IN
population is sixfold lower than that of black carbon (Phillips
et al., 2008). The total surface area of each aerosol pop-
ulation is scaled to the base size distributions of Phillips
et al. (2008). For the CNT spectrum a simple linear re-
lation is employed to diagnoseef,j , being about 0.05 for
dust and soot aerosol particles atsi=sh (Pruppacher and
Klett, 1997) and decreasing linearly forsi<sh (Table 1).
Freezing thresholds were set tosh,dust=0.2 (Kanji et al.,
2008) andsh,soot=0.3 (Möhler et al., 2005);θdust was set to
16◦ (mdust=0.96) andθsoot to 40◦ (msoot=0.76) (Chen et al.,
2008). khom is calculated based on Koop et al. (2000) using
the fitting of Barahona and Nenes (2008, 2009);shom is ob-
tained from the analytical fit of Ren and Mackenzie (2005).
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Fig. 1. Parameterization algorithm.

Fig. 2. Comparison betweensmax predicted by parameterization
and parcel model for conditions of pure heterogeneous freezing.
Dashed lines represent±5% difference.

4.1 Comparison against parcel model results

The parameterization was compared against the numerical
solution of Eqs. (7) to (9) using the model of Barahona and
Nenes (2008, 2009), for all nucleation spectra of Table 1, and
conditions of Table 2 (about 1200 simulations overall). To in-
dependently test the accuracy of Eqs. (26) and (30), simula-
tions were made under conditions of pure heterogeneous and
combined homogeneous-heterogeneous freezing. Calculated
Nc ranged from 10−4 to 102 cm−3; smax ranged (in absolute
units) from 0.05 to 1 for pure heterogeneous freezing (i.e.,
homogeneous freezing deactivated) and from 0.05 to 0.6 for
combined homogeneous-heterogeneous freezing, which cov-

Table 2. Cloud formation conditions and aerosol characteristic used
in the parameterization evaluation.

Property Values

To (K) 205–250
V (m s−1) 0.04–2
αd 0.1, 1.0
σg,dry 2.3
No (cm−3) 200
Dg,dry (nm) 40
Ndust (cm−3) 0.05–5
Nsoot (cm−3) 0.05–5
θdust 16◦

θsoot 40◦

sh,dust 0.2
sh,soot 0.3

ers the expected range of conditions encountered in a GCM
simulation.

Figure 2 showssmax (calculated solving Eq. 26) vs. the
parcel model results for conditions of pure heterogeneous
freezing. The statistical analysis of the comparison is shown
in Table 3 for all nucleation spectra of Table 1 and condi-
tions of Table 2. The overall error with respect to parcel
model results is−1.68±3.42%, which is remarkably low,
given the complexity of Eqs. (7) to (9), and the diversity
of Nhet(si) expressions used. Among the nucleation spec-
tra tested, the largest variability was obtained when using
PDA08 (−2.69±2.81%) and CNT (−1.56±4.14%). This
results from variations in the form of theNhet(si) function;
the distribution functions,ns(si), for MY92 and PDG07 are
monotonically increasing and smooth (e.g., Fig. 5) over the
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Table 3. Average % relative error (standard deviation) of parameterizedNc andsmax against parcel model simulations. Results are shown
for when a) heterogeneous freezing is only active, and, b) homogeneous and heterogeneous nucleation are active.Nc,n, Nc,p, are ice crystal
concentrations from parcel model and parameterization, respectively; similarly for maximum supersaturation,smax,n, smax,p.

Ice formation mechanism Pure heterogeneous Homogeneous and heterogeneous

Spectrum
smax,p−smax,n

smax,n

Nc,p−Nc,n

Nc,n

Nc,p−Nc,n

Nc,n

MY92 0.43(2.29) 1.14(13.3) 2.95(21.2)
PDG07 0.63(1.56) 3.39(7.60) −3.78(20.7)
PDA08 −2.69(2.81) −3.26(8.32) 9.64(21.1)
CNT −0.44(5.56) −1.56(4.14) 3.26(22.6)

All combined −1.68(3.42) −2.08(8.58) 4.72(21.8)

entiresi range considered. PDA08 and CNT are character-
ized by abrupt changes inNhet(si) which produces discon-
tinuities inns(si). This is evident for the CNT spectrum as
the error in the calculation ofsmax lowers (−0.44±5.6 %) if
only data withsmax<sh,soot is considered. CNT also shows a
slight overestimation ofsmax at high values caused by the as-
sumption ofsh,char=0 whenns(si)=0, Eq. (24); this however
is not a source of uncertainty forNhet calculation (Fig. 3) as
crystal concentration is constant forsmax>sh,soot (Table 1).
Another source of discrepancy (which is however never out-
side of the±5% range) is the small change inT (∼4 K),
from si=0 to si=smax which is larger at highV and causes
an slight underestimation ofsmax at high values (∼smax>0.7)

for the PDG07 and MY92 spectra.
Figure 3 shows that the error inNhet calculation is also

quite low,−2.0±8.5%, which indicates no biases in the pa-
rameterization. The slightly larger error inNc compared to
the error insmax originates from the sensitivity ofNhet(smax)

to small variations insmax. Figure 3 shows that the larger dis-
crepancy insmax (Fig. 2) when using the CNT and PDA08
spectra does not translate into a large error inNhet which
remains low for these cases (∼5%). The largest variability
(±13.5%) was found using MY92 and is related to the slight
underestimation ofsmax at high V (smax>0.7). 1schar for
MY92 is around 0.07 (whereas for the other spectra of Ta-
ble 1 it is generally above 0.2) which indicates that most crys-
tals in the MY92 spectrum freeze atsi close tosmax (Eq. 24);
MY92 is therefore most sensitive to the small underestima-
tion in smax at highV .

When competition between homogeneous and heteroge-
neous nucleation is considered (Fig. 4),smax≈shom, and no
explicit dependency ofNc onsmax is considered; this approx-
imation however does not introduce substantial error in the
calculation ofNc (Barahona and Nenes, 2008). The over-
all error in Nc calculation for this case is 4.7±21%. Com-
parison of Figs. 3 and 4 suggests that most of the error re-
sults from the inherent error of the homogeneous nucleation
scheme (1±28%, Barahona and Nenes, 2008). Figure 4
shows that the parameterization reproduces the parcel model
results from the pure heterogeneous (i.e.,Nhet

Nlim
>1) to the pure

Fig. 3. Comparison betweenNhet from pure heterogeneous freezing
predicted by the parameterization and the parcel model for simula-
tion conditions of Table 2 and freezing spectra of Table 1. Dashed
lines represent the±30% difference.

homogeneous (i.e.,Nhet
Nlim

→0) freezing limit. The largest dis-
crepancy (−9.6±21%) occurs when the PDA08 spectrum is
used, and is related to the complexity of theNhet(si) func-
tion. Larger variations (mostly within a factor of 2) also oc-
cur whenNhet(smax)→Nlim and are caused by the high sen-
sitivity of Nc to Nhet(smax) for Nhet

Nlim
≈1 (cf., Barahona and

Nenes, 2009, Fig. 3).

4.2 Comparison against existing schemes

The new parameterization was compared against the schemes
of Liu and Penner (2005, LP05) and Kärcher et al. (2006,
K06), for all spectra of Table 1 and, forT =206 K,
p=22 000 Pa, and,αd=0.5. Consistent with K06, the max-
imum number concentration of IN was set to 0.005 cm−3,
which for ef,soot=0.05 impliesNsoot=0.1 cm−3. Cases with
no dust present (i.e.,Ndust=0 and no deposition freezing
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Fig. 4. Comparison betweenNc from combined homogeneous and
heterogeneous freezing predicted by the parameterization and the
parcel model for simulation conditions of Table 2 and freezing spec-
tra of Table 1. Dashed lines represent the±30% difference. Colors
indicate the ratioNhet

Nlim
.

in LP05) and withNdust=Nsoot were considered. For the
“no-dust” case (Fig. 5, left) K06 and the new parameteri-
zation (Eq. 30), using the CNT, MY92, and PDG07 spectra,
agree within a factor of two at the pure heterogeneous limit
(∼V <0.01 m s−1). Homogenous freezing in these cases is
triggered (i.e.,Nlim>Nhet) between 0.03 and 0.07 m s−1 ex-
cept when using MY92, whereV >0.7 m s−1 is needed to
allow homogeneous freezing. When using Eq. (30) and
PDA08, a much lowerNhet is predicted over the entireV
range considered, and homogeneous freezing is triggered at
very low V ∼0.002 m s−1 (i.e., heterogeneous freezing has a
negligible effect onNc).

LP05 predictsNhet about two orders of magnitude higher
than the application of Eq. (30) to the PDG07 and CNT spec-
tra. This discrepancy may result from the highef,soot∼1 im-
plied in this parameterization compared to the other freezing
spectra considered (which is evident forV >0.04 m s−1 as
Nhet≈Nsoot). LP05 also predicts complete inhibition of ho-
mogeneous freezing up toV ∼0.3 m s−1 (Fig. 5, right) which
is much larger than the range between 0.03 and 0.07 m s−1

found by application of Eq. (30). The discrepancy between
LP05 and the other schemes in Fig. 5 is due to differences
in the values ofsh,soot andαd used in generating LP05. In
fact, the results of LP05 can be approximately reproduced
by settingef,soot=1.0 andsh,soot=0.1 in the CNT profile and
by changing the value ofαd to 0.1, as shown in the CNT(b)
curves of Figs. 5 and 6. The lower value ofsh,soot=0.1 re-
quired to reproduce LP05, compared to the one used by Liu
and Penner (2005),sh,soot=0.2, results from the smoother
freezing pulse in the CNT model as opposed to the step func-
tion implied by the model of Liu and Penner (2005).

When similar concentrations of dust and soot are consid-
ered (Fig. 5 right), Eq. (30) with PDA08 come much closer
to simulations using CNT and PDG07. K06 (maintaining
NIN=0.005 cm−3) still lies within a factor of two from the
results obtained with Eq. (30) and the CNT, PDA08, and
PDG07 spectra. By including dust, the onset of homoge-
neous nucleation is triggered at slightly higherV , compared
to the case with no dust (CNT). For PDA08, the change is
more pronounced, indicating that the maximumef,dust im-
plied by PDA08 is substantially larger thanef,soot for the
same spectrum, i.e., most of the crystals in this case come
from freezing of dust. At the pure homogeneous freezing
limit (V ∼1 m s−1), IN effects onNc are unimportant, and,
Nc for all spectra agree well with K06 (Barahona and Nenes,
2008). At this limit, LP05 predicts a twofold higherNc

due to the different set of parameters used in its develop-
ment (Liu and Penner, 2005). The discrepancy between LP05
and the CNT profile can be reconciled by settingef,soot=1,
sh,soot=0.1, andαd=0.1.

A comparison of predictedsmax between the new parame-
terization and LP05 was also carried out. The curves of Fig. 6
can be used to explain the profiles of Fig. 5, as homogeneous
freezing is prevented ifsmax<shom (Gierens, 2003; Barahona
and Nenes, 2009). When dust is not included,smax calcu-
lated using PDA08 approachesshom at very lowV , therefore
allowing homogeneous nucleation to take place in almost
the entire range ofV considered (not shown). When dust
is included,smax calculated using Eq. (30) and the PDG07,
PDA08 and CNT spectra approachesshom for V between
0.02 and 0.06 m s−1. When using MY92,smax is belowshom
for almost the entire range ofV considered, and, explains
why homogeneous freezing is prevented for most values of
V . LP05 predicts a very differentsmaxprofile , being constant
(smax∼0.2) at low V , then a steep increase insmax around
V ∼0.1 m s−1 which reachesshom at V ∼0.3 m s−1. In this
case, settingef,soot=1, sh,soot=0.1, andαd=0.1 reduces the
discrepancy between LP05 and CNT (curve CNT (b)) for
smax∼shom and V ∼0.2–0.3 m s−1. The two schemes how-
ever still diverge atV <0.1 m s−1.

5 Summary and conclusions

We present an ice cloud formation parameterization that cal-
culatesNc and smax explicitly considering the competition
between homogeneous and heterogeneous freezing from a
polydisperse (in size and composition) aerosol population.
Heterogeneous freezing is accounted for by using a nucle-
ation spectrum that could have any functional form. Ana-
lytical solution of the parcel model equations was accom-
plished by reformulating the supersaturation balance and by
introducing the concepts of characteristic freezing thresh-
old and characteristic size of a polydisperse ice crystal pop-
ulation. The approach presented here successfully decou-
ples the nucleation and growth factors in the solution of the
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Fig. 5. Nc vs.V calculated using the new parameterization for all freezing spectra of Table 1. Also shown are results taken from Kärcher
et al. (2006, K06) forNIN=5×10−3 cm−3 and, the parameterization of Liu and Penner (2005). Conditions considered wereTo=210 K
(T =206 K),p=22 000 Pa,αd=0.5. Left panel:Nsoot=0.1 cm−3, Ndust=0 cm−3 and no deposition freezing considered in LP05. Right panel:
Nsoot=0.1 cm−3, Ndust=0.1 cm−3 and deposition freezing considered in LP05. For CNT(a) runs were made as presented in Tables 1 and 2
while for CNT(b) conditions were changed tosh,soot=0.1, ef,soot=1.0, andαd=0.1.

supersaturation balance, and together with the work of Bara-
hona and Nenes (2008, 2009), provides a comprehensive pa-
rameterization for ice cloud formation. The parameterization
was tested with a diverse set of published IN spectra (Ta-
ble 1), which includes a formulation introduced here derived
from classical nucleation theory.

When evaluated over a wide set of conditions and IN
nucleation spectra, the parameterization reproduced de-
tailed numerical parcel model results to−1.6±3.4% and
−2.0±8.5%, for the calculation ofsmax andNhet from pure
heterogeneous freezing, respectively, and 4.7±21% for the
calculation ofNc from combined homogeneous and hetero-
geneous freezing. Comparison against other formulations
over a limited set of conditions showed that changes in the
freezing efficiency of each IN population (i.e., dust and soot)
is the main factor determining the effect of heterogeneous
freezing on the total ice crystal concentration,Nc. The vari-
ability of Nc shown in Fig. 6 is however much lower than
reported by Phillips et al. (2008), who compared several nu-
cleation spectra at fixedsi ; this emphasizes the importance of
using a proper dynamic framework in comparing nucleation
spectra.

During the development of the parameterization (Sect. 3)
it was implicitly assumed that the cloudy parcel is initially
devoid of ice crystals. If cirrus persist beyond the time step
of the host model, then the effect of preexisting ice crystals
should be accounted for in the parameterization by including
an additional water vapor depletion term at the left hand side
of Eq. (14). This effect however may be small as crystals
with large sizes tend to fall out of the nucleation zone (i.e.,
the zone with highest supersaturation in the cloud) during the
evolution of the cirrus cloud (Spichtinger and Gierens, 2009).
If the heterogeneously nucleated ice crystals fall out however

Fig. 6. smax vs. V calculated using the parameterization of Liu
and Penner (2005) and the new parameterization for all freezing
spectra of Table 1. Conditions considered are similar to Fig. 5 and
Nsoot=Ndust=0.1 cm−3. For CNT(b) sh,soot=0.1, ef,soot=1.0,
andαd=0.1.

from the nucleation zone beforesmax is reached, the effect of
IN on homogeneous nucleation may be reduced. Theoreti-
cal studies (Kay et al., 2006; Spichtinger and Gierens, 2009)
suggest that deposition effects may be significant at lowV

(<0.05 m s−1) and lowNhet (<0.01 cm−3). Deposition ef-
fects can be included in Eq. (14) by adding a “fallout” term
(Kay et al., 2006) to the supersaturation balance, Eq. (7), and
is the subject of a companion study.

www.atmos-chem-phys.net/9/5933/2009/ Atmos. Chem. Phys., 9, 5933–5948, 2009



5944 D. Barahona and A. Nenes: Homogeneous and heterogeneous freezing in ice cloud formation

The parameterization presented in this work is suitable for
large-scale atmospheric models that cannot resolve ice su-
persaturation at the scale of cloud formation (∼50 m (Prup-
pacher and Klett, 1997)). It is computationally efficient and
analytically unravels the dependency of ice crystal concen-
tration on cloud formation conditions (T ,p,V ), deposition
coefficient, the size and composition of the droplet popula-
tion, and insoluble aerosol (i.e., IN) concentrations. It pro-
vides a framework in which new ice nucleation data can eas-
ily be incorporated in aerosol-cloud interaction studies.

Appendix A

The convolution product

Let f1 andf2 be two locally integrable functions over the
real axis, then the function

(f1 ∗ f2) (x) =

∞∫
0

f1(v)f2(x − v)dv (A1)

is called the convolution product off1 andf2 (Kecs, 1982).
The half-convolution product (or convolution of the half-
axis) is defined forx≥0 as

(f1 ⊗ f2) (x) =

∫ x

0
f1(v)f2(x − v)dv (A2)

and related to the convolution product by

(f1 ⊗ f2) (x) = [H(f1) ∗ H(f2)] (x) (A3)

where H is the Heaviside function,

H(v) =

{
0, v < 0
1, v ≥ 0

(A4)

The convolution product is commutative and distributive; its
integral is given by∫

(f1 ∗ f2) dx =

∫
f1(u)du

∫
f2(v)dv (A5)

its derivative is expressed as

d

dx
(f1 ∗ f2) (x)=

(
df1

dx
∗ f2

)
(x)=

(
f1 ∗

df2

dx

)
(x) (A6)

Appendix B

Analytical correction for non-continuum effects

The lower limit for the size of an ice crystal ice crystal that
freezes at supersaturations′

o=0 during the parcel ascent (Ren
and Mackenzie, 2005; Barahona and Nenes, 2008), obtained

assumingdsi
dt

∣∣∣
smax

≈αV (smax+1), is given by

Dc(1s, αd) = −
02

01
+

√(
02

01

)2

+
1s2

αV 01
(B1)

where 1s=smax−s′
o and it was assumed that

1s− ln
(

smax+1
s′
o+1

)
≈

1
21s2. Dc depends onαd as 02∝

1
αd

.

Equation (B1) provides a lower limit forDc and can be
used to develop a conservative (i.e., where mass transfer
limitations to crystal growth are most significant) correction
for non-continuum mass transfer effects. Equation (B1) can
be rewritten as

Dc(1s, αd) = γ

[√
1 + (λ1s)2

− 1

]
(B2)

whereγ=
02
01

, λ=

√
1

αV 01γ
2 . After substituting Eq. (B2) into

Eq. (9) and rearranging, the volumetric rate of change of an

ice crystal atsmax, i.e., π
2 D2

c
dDc

dt
=

π
2

smaxD
2
c

01Dc+02
, can be written

in the form

π

2
D2

c

dDc

dt
=

π

2

smax

01

γ
(
1 −

√
1 + (λ1s)2

)2

√
1 + (λ1s)2

(B3)

Multiplying an dividing the right hand side of Eq. (B3) by
λ1s and rearranging gives,

π

2
D2

c

dDc

dt
=

[
π

2

smaxγ λ1s

01

] 
(
1 −

√
1 + (λ1s)2

)2

λ1s
√

1 + (λ1s)2

 (B4)

It can be recognized that the first term in brackets in Eq. (B4)

is obtained fromπ
2 D2

c
dDc

dt
=

π
2

smaxD
2
c

01Dc+02
, taking into account

Eq. (B1), when01�02, i.e., when non-continuum effects
on mass transfer can be neglected (cf. Barahona and Nenes,
2008, Sect. 3.3). Thus, the second term in brackets in
Eq. (B4) corresponds to a correction factor toπ

2 D2
c

dDc

dt
for

non-continuum mass transfer effects, which only depends on
the productλ1s. Equation (11) suggests thatλsmax is a char-
acteristic value forλ1s, therefore Eq. (B4) can be rewritten
as

π

2
D2

c

dDc

dt
≈

π

2

smaxDc(1s)

01

(
1 −

√
1 + λ2s2

max

)2

λsmax
√

1 + λ2s2
max

(B5)

For smax>0.05, Eq. (B5) can be approximated by

π

2
D2

c

dDc

dt
≈

π

2

smaxDc(1s)

01
e
−

2
λsmax (B6)
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Appendix C

List of symbols and abbreviations

α
g1HsMw

cpRT 2 −
agMa

RT

αd Deposition coefficient of water
vapor to ice

ag Acceleration of gravity

β
Map

Mwpo
i
−

1H2
s Mw

cpRT 2

γ
02
01

cp Specific heat capacity of air
Dc Volume sphere-equivalent di-

ameter of an ice particle
1Hs Enthalpy of sublimation of wa-

ter
DIN Volume sphere-equivalent di-

ameter of an IN
1s smax−s′

o

1schar smax−schar
1s∗

char Growth integral, defined by
Eq. (25)

Dv Water vapor mass transfer coef-
ficient

ef,j Maximum freezing efficiency of
thej -th IN species

fc,hom, fc Fraction of frozen particles
at shom with and without IN
present, respectively.

fh,j Shape factor of thej -th IN
species

01
ρiRT

4po
i DvMw

+
1Hsρi

4kaT

(
1HsMw

RT
−1

)
02

ρiRT
2po

i Mw

√
2πMw

RT
1
αd

H Heaviside function
J (si), J Nucleation rate coefficient atsi
Jhom(shom) Homogenous nucleation rate

coefficient atshom
Jh,j (sh,j ) Heterogeneous nucleation

rate coefficient at the freez-
ing threshold of thej -th IN
population

k(T ) Freezing parameter defined by
Eq. (2)

ka Thermal conductivity of air
khom Homogeneous freezing parame-

ter, ln Jhom(shom)
Jhom(si )

(shom−si)
−1

λ
√

1
αV 01γ

2

m1...nx Multidimensional variable that
symbolizes the mass fraction of
the nx chemical species present
in an aerosol population

mj Wettability parameter of thej -
th IN species, cos(θj )

Mw, Ma Molar masses of water and air,
respectively

N∗
√

2(αV 01)
3/2

(
β π

2
ρi

ρa

)−1

Na,j Number concentration of thej -
th insoluble aerosol species

Nc Total ice crystal number con-
centration

nc(Dc, DIN, m, t)Number distribution of the ice
crystals

Ndust Dust number concentration
Nsoot Soot number concentration
Nhet Ice crystals number concentra-

tion from heterogeneous freez-
ing

Nhet(si) Cumulative heterogeneous nu-
cleation spectrum

Nhom(si) Cumulative homogeneous nu-
cleation spectrum

NIN Maximum IN number concen-
tration

Nlim Limiting NIN that would pre-
vent homogeneous nucleation

No Number concentration of the su-
percooled liquid droplet popula-
tion

ns(si) Heterogeneous nucleation spec-
trum

nsp Number of externally mixed IN
populations

nx Number of chemical species
present in the aerosol popula-
tion

p Ambient pressure
Pf Freezing probability
po

i Ice saturation vapor pressure
R Universal gas constant
ρi , ρa Ice and air densities, respec-

tively
sh,j Freezing threshold of thej-th IN

species
schar Characteristic freezing thresh-

old of the heterogeneous IN
population

shom Homogeneous freezing thresh-
old

si Water vapor supersaturation ra-
tio with respect to ice

smax Maximum ice supersaturation
ratio

s′
o Freezing threshold of an IN

T Temperature
To Initial temperature of the cloudy

parcel
t Time
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θj Contact angle between thej -th
IN species surface and water

V Updraft velocity
v̄o Mean volume of the droplet

population
wi Ice mass mixing ratio
X Domain of integration in Eq. (6)
�̄j Mean surface area of thej -th in-

soluble aerosol population
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Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud
formation: Heterogeneous freezing, J. Geophys. Res., 108, 4402,
doi:4410.1029/2002JD003220, 2003.
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