Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 9, 4945-4956, 2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
24 Jul 2009
A product study of the isoprene+NO3 reaction
A. E. Perring1,*, A. Wisthaler2,*, M. Graus2, P. J. Wooldridge1, A. L. Lockwood4, L. H. Mielke4, P. B. Shepson3,4, A. Hansel2, and R. C. Cohen1,5 1Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
2Institut fuer Ionenphysik und Angewandte Physik, University of Innsbruck, Innsbruck, Austria
3Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, USA
4Department of Chemistry, Purdue University, West Lafayette, IN, USA
5Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
*equally contributing first authors
Abstract. Oxidation of isoprene through reaction with NO3 radicals is a significant sink for isoprene that persists after dark. The main products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene + NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF). The organic nitrate yield is found to be 65±12% of which the majority was nitrooxy carbonyls and the combined yield of methacrolein and methyl vinyl ketone (MACR+MVK) is found to be ∼10%. PTR-MS measurements of nitrooxy carbonyls and TD-LIF measurements of total organic nitrates agreed well. The PTR-MS also observed a series of minor oxidation products which were tentatively identified and their yields quantified These other oxidation products are used as additional constraints on the reaction mechanism.

Citation: Perring, A. E., Wisthaler, A., Graus, M., Wooldridge, P. J., Lockwood, A. L., Mielke, L. H., Shepson, P. B., Hansel, A., and Cohen, R. C.: A product study of the isoprene+NO3 reaction, Atmos. Chem. Phys., 9, 4945-4956,, 2009.
Publications Copernicus