Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 9, issue 2 | Copyright

Special issue: Validation results for the Atmospheric Chemistry Experiment...

Atmos. Chem. Phys., 9, 287-343, 2009
https://doi.org/10.5194/acp-9-287-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  16 Jan 2009

16 Jan 2009

Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

E. Dupuy1, K. A. Walker1,2, J. Kar2, C. D. Boone1, C. T. McElroy2,3, P. F. Bernath1,4, J. R. Drummond2,5, R. Skelton1, S. D. McLeod1, R. C. Hughes1, C. R. Nowlan2, D. G. Dufour6, J. Zou2, F. Nichitiu2, K. Strong2, P. Baron7, R. M. Bevilacqua8, T. Blumenstock9, G. E. Bodeker10, T. Borsdorff11, A. E. Bourassa12, H. Bovensmann13, I. S. Boyd14, A. Bracher13, C. Brogniez15, J. P. Burrows13, V. Catoire16, S. Ceccherini17, S. Chabrillat18, T. Christensen19, M. T. Coffey20, U. Cortesi17, J. Davies3, C. De Clercq18, D. A. Degenstein12, M. De Mazière18, P. Demoulin21, J. Dodion18, B. Firanski22, H. Fischer9, G. Forbes23, L. Froidevaux24, D. Fussen18, P. Gerard18, S. Godin-Beekmann25, F. Goutail26, J. Granville18, D. Griffith27, C. S. Haley28, J. W. Hannigan20, M. Höpfner9, J. J. Jin29, A. Jones30, N. B. Jones27, K. Jucks31, A. Kagawa7,32, Y. Kasai7, T. E. Kerzenmacher2, A. Kleinböhl13,24, A. R. Klekociuk33, I. Kramer9, H. Küllmann13, J. Kuttippurath13,25, E. Kyrölä34, J.-C. Lambert18, N. J. Livesey24, E. J. Llewellyn12, N. D. Lloyd12, E. Mahieu21, G. L. Manney24,35, B. T. Marshall36, J. C. McConnell29, M. P. McCormick37, I. S. McDermid38, M. McHugh36, C. A. McLinden3, J. Mellqvist30, K. Mizutani7, Y. Murayama7, D. P. Murtagh30, H. Oelhaf9, A. Parrish39, S. V. Petelina12,40, C. Piccolo41, J.-P. Pommereau26, C. E. Randall42, C. Robert16, C. Roth12, M. Schneider9, C. Senten18, T. Steck9, A. Strandberg30, K. B. Strawbridge22, R. Sussmann11, D. P. J. Swart43, D. W. Tarasick3, J. R. Taylor2, C. Tétard15, L. W. Thomason37, A. M. Thompson44, M. B. Tully45, J. Urban30, F. Vanhellemont18, C. Vigouroux18, T. von Clarmann9, P. von der Gathen46, C. von Savigny13, J. W. Waters24, J. C. Witte47,48, M. Wolff2, and J. M. Zawodny37 E. Dupuy et al.
  • 1Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
  • 2Department of Physics, University of Toronto, Toronto, ON, Canada
  • 3Environment Canada, Downsview, ON, Canada
  • 4Department of Chemistry, University of York, Heslington, York, UK
  • 5Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
  • 6Picomole Instruments Inc., Edmonton, AB, Canada
  • 7National Institute of Information and Communications Technology (NICT), Koganei, Tokyo, Japan
  • 8Naval Research Laboratory, Washington, D.C., USA
  • 9Institut für Meteorologie und Klimaforschung (IMK), Forschungszentrum Karlsruhe (FZK) and Universität Karlsruhe, Karlsruhe, Germany
  • 10National Institute of Water and Atmospheric Research, Lauder, New Zealand
  • 11Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMK-IFU), Forschungszentrum Karlsruhe, Garmisch-Partenkirchen, Germany
  • 12Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, SK, Canada
  • 13Institut für Umweltphysik (IUP), Universität Bremen, Bremen, Germany
  • 14NIWA – Environmental Research Institute, University of Massachusetts, Amherst, MA, USA
  • 15Laboratoire d'Optique Atmosphérique, CNRS – Université des sciences et technologies de Lille, Villeneuve d'Ascq, France
  • 16Laboratoire de Physique et Chimie de l'Environnement, CNRS – Université d'Orléans, Orléans, France
  • 17Instituto di Fisica Applicata "N. Carrara" (IFAC) del Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Italy
  • 18Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Bruxelles, Belgium
  • 19Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark
  • 20Earth and Sun Systems Laboratory (ESSL), National Center for Atmospheric Research (NCAR), Boulder, CO, USA
  • 21Institut d'Astrophysique et de Géophysique, Université de Liège, Liège, Belgium
  • 22Science and Technology Branch, Environment Canada, Centre For Atmospheric Research Experiments, Egbert, ON, Canada
  • 23Environment Canada Sable Island, Dartmouth, Canada
  • 24Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, USA
  • 25CNRS – Service d'Aéronomie (SA), Université Pierre et Marie Curie (UPMC) Paris VI, Paris, France
  • 26CNRS – Service d'Aéronomie (SA), Verrières-le-Buisson, France
  • 27School of Chemistry, University of Wollongong, Wollongong, Australia
  • 28Centre for Research in Earth and Space Science, York University, Toronto, ON, Canada
  • 29Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada
  • 30Department of Radio and Space Science, Chalmers University of Technology, Göteborg, Sweden
  • 31Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
  • 32Fujitsu FIP Corporation, Koto, Tokyo, Japan
  • 33Ice, Ocean, Atmosphere and Climate (IOAC) Program, Australian Antarctic Division, Kingston, Australia
  • 34Earth Observation, Finnish Meteorological Institute, Helsinki, Finland
  • 35New Mexico Institute of Mining and Technology, Socorro, NM, USA
  • 36GATS, Inc., Newport News, VA, USA
  • 37NASA Langley Research Center, Atmospheric Sciences Division, Hampton, VA, USA
  • 38Jet Propulsion Laboratory, Table Mountain Facility, Wrightwood, CA, USA
  • 39Department of Astronomy, University of Massachusetts, Amherst, MA, USA
  • 40Department of Physics, La Trobe University, Victoria, Australia
  • 41Atmospheric, Oceanic and Planetary Physics, Oxford University, UK
  • 42Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
  • 43National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
  • 44Department of Meteorology, Pennsylvania State University, University Park, PA, USA
  • 45Atmosphere Watch Section, Bureau of Meteorology, Melboune, Vic, Australia
  • 46Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Germany
  • 47Science Systems and Applications, Inc., Lanham, MD, USA
  • 48NASA Goddard Space Flight Center (GSFC), Greenbelt, MD, USA

Abstract. This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share