Supplementary material for: Influence of modelled soil biogenicNO emissions on related trace gases and the atmospheric oxidizing efficiency

J. Steinkamp, L. N. Ganzeveld, W. Wilcke and M. G. Lawrence

January 20, 2009

Abstract

In this document you can find figures with absolute differences in the LT column mixing ratio/concentration of relevant tracers and some additional plots, which were not included in the article.
Figure 1: Scatterplot of difference in the tracer mixing ratio/concentration (HNOS - BASE) versus soil NO emission. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degsouth, T: 30deg southth–30deg north)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degsouth, T: 30degsouth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date”
“column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global,
N: 30–60degnorth, S: 30–60degsouth, T: 30degsouthth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degssouth, T: 30degssouth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60deg north, S: 30–60deg south, T: 30deg south–30deg north)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degsouth, T: 30degsouth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60deg north, S: 30–60deg south, T: 30deg south–30deg north)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degsouth, T: 30degsouth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60degnorth, S: 30–60degsouth, T: 30degsouthth–30degnorth)
Figure 1: Continued. Naming of each plot: “tracer” “start date” “end date” “column height” (-1 for surface layer; 500 up to 500hPa) “domain” (G: global, N: 30–60deg north, S: 30–60deg south, T: 30deg south–30deg north)
Figure 2: Absolute difference (NOBIONO – BASE) of the lower tropospheric column mixing ratio of NO$_x$ in pmol mol$^{-1}$ averaged for a) December, January, February and b) June, July and August.
Figure 3: Absolute difference (NOBIONO – BASE) of zonal mean mixing ratio of NO\textsubscript{x} in \textit{pmol mol-1} averaged for a) December, January, February and b) June, July and August
Figure 4: Absolute difference (REDOTHER – BASE) of the lower tropospheric column mixing ratio of NO\textsubscript{x} in pmol mol-1 averaged for a) December, January, February and b) June, July and August
Figure 5: Absolute difference (REDOTHER – BASE) of zonal mean mixing ratio of NO\textsubscript{x} in pmol/mol averaged for a) December, January, February and b) June, July and August.
Figure 6: Absolute difference (NOBIONO – BASE) of the lower tropospheric column mixing ratio of PAN in \(\text{pmol mol}^{-1} \) averaged for a) December, January, February and b) June, July and August.
Figure 7: Absolute difference (NOBIONO – BASE) of zonal mean mixing ratio of PAN in pmol mol\(^{-1}\) averaged for a) December, January, February and b) June, July and August
Figure 8: Absolute difference (REDOTHER – BASE) of the lower tropospheric column mixing ratio of PAN in pmol mol^{-1} averaged for a) December, January, February and b) June, July and August.
Figure 9: Absolute difference (REDOTHER – BASE) of zonal mean mixing ratio of PAN in \(\text{pmol mol}^{-1} \) averaged for a) December, January, February and b) June, July and August.
Figure 10: Absolute difference (NOBIONO – BASE) of the lower tropospheric column mixing ratio of HNO$_3$ in pmol/m2 averaged for a) December, January, February and b) June, July and August.
Figure 11: Absolute difference (NOBIONO – BASE) of zonal mean mixing ratio of HNO$_3$ in pmol mol$^{-1}$ averaged for a) December, January, February and b) June, July and August.
Figure 12: Absolute difference (REDOTHER – BASE) of the lower tropospheric column mixing ratio of HNO$_3$ in pmol mol$^{-1}$ averaged for a) December, January, February and b) June, July and August.
Figure 13: Absolute difference (REDOTHER – BASE) of zonal mean mixing ratio of HNO$_3$ in \textit{pmol mol}$^{-1}$ averaged for a) December, January, February and b) June, July and August
Figure 14: Absolute difference (NOBIONO – BASE) of the lower tropospheric column mixing ratio of O$_3$ in nmol mol^{-1} averaged for a) December, January, February and b) June, July and August.
Figure 15: Absolute difference (NOBIONO – BASE) of zonal mean mixing ratio of O$_3$ in mol/mol averaged for a) December, January, February and b) June, July and August
Figure 16: Absolute difference (REDOOTHER – BASE) of the lower tropospheric column mixing ratio of O$_3$ in nmol mol^{-1} averaged for a) December, January, February and b) June, July and August
Figure 17: Absolute difference (REDOther – BASE) of zonal mean mixing ratio of O_3 in nmol mol^{-1} averaged for a) December, January, February and b) June, July and August.
Figure 18: Absolute difference (NOBIONO – BASE) of the lower tropospheric column mixing ratio of OH in 10^3 molec cm$^{-3}$ averaged for a) December, January, February and b) June, July and August
Figure 19: Absolute difference (NOBIONO – BASE) of zonal mean mixing ratio of OH in $10^3 \text{molec cm}^{-3}$ averaged for a) December, January, February and b) June, July and August.
Figure 20: Absolute difference (REDOTHER – BASE) of the lower tropospheric column mixing ratio of OH in $10^3 \text{molec cm}^{-3}$ averaged for a) December, January, February and b) June, July and August
Figure 21: Absolute difference (REDOHER – BASE) of zonal mean mixing ratio of OH in 10^3 molec cm$^{-3}$ averaged for a) December, January, February and b) June, July and August.