Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 9, issue 8 | Copyright

Special issue: The Arctic Study of Aerosol, Clouds and Radiation (ASTAR)

Atmos. Chem. Phys., 9, 2647-2661, 2009
https://doi.org/10.5194/acp-9-2647-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  16 Apr 2009

16 Apr 2009

Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations – a case study

A. Lampert1, A. Ehrlich2, A. Dörnbrack3, O. Jourdan4, J.-F. Gayet4, G. Mioche4, V. Shcherbakov4,5, C. Ritter1, and M. Wendisch2 A. Lampert et al.
  • 1Alfred Wegener Institute for Polar and Marine Research, 14473 Potsdam, Germany
  • 2Johannes Gutenberg-Universität, 55099 Mainz, Germany
  • 3Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, 82234 Oberpfaffenhofen, Germany
  • 4Laboratoire de Météorologie Physique UMR 6016 CNRS/Université Blaise Pascal, France.
  • 5Laboratoire de Météorologie Physique, Institut Universitaire de Technologie de Montluçon, 03101 Montluçon Cedex, France

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed south of Svalbard at around 3 km altitude. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in situ instruments. Collocated airborne lidar remote sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in situ sensors roughly 30 min later.

From individual ice crystal samples detected with the Cloud Particle Imager and the ensemble of particles measured with the Polar Nephelometer, microphysical properties were retrieved with a bi-modal inversion algorithm. The best agreement with the measurements was obtained for small ice spheres and deeply rough hexagonal ice crystals. Furthermore, the single-scattering albedo, the scattering phase function as well as the volume extinction coefficient and the effective diameter of the crystal population were determined. A lidar ratio of 21(±6) sr was deduced by three independent methods. These parameters in conjunction with the cloud optical thickness obtained from the lidar measurements were used to compute spectral and broadband radiances and irradiances with a radiative transfer code. The simulated results agreed with the observed spectral downwelling radiance within the range given by the measurement uncertainty. Furthermore, the broadband radiative simulations estimated a net (solar plus thermal infrared) radiative forcing of the subvisible midlevel ice cloud of −0.4 W m−2 (−3.2 W m−2 in the solar and +2.8 W m−2 in the thermal infrared wavelength range).

Download & links
Publications Copernicus
Special issue
Download
Citation
Share