Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 8, 6199-6221, 2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
27 Oct 2008
Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations
E. Mahieu1, P. Duchatelet1, P. Demoulin1, K. A. Walker2,3, E. Dupuy3, L. Froidevaux4, C. Randall5, V. Catoire6, K. Strong2, C. D. Boone3, P. F. Bernath7, J.-F. Blavier4, T. Blumenstock8, M. Coffey9, M. De Mazière10, D. Griffith11, J. Hannigan9, F. Hase8, N. Jones11, K. W. Jucks12, A. Kagawa13, Y. Kasai13, Y. Mebarki6, S. Mikuteit8, R. Nassar14, J. Notholt15, C. P. Rinsland16, C. Robert6, O. Schrems17, C. Senten10, D. Smale18, J. Taylor2, C. Tétard19, G. C. Toon4, T. Warneke15, S. W. Wood18, R. Zander1, and C. Servais1 1Groupe Infra-Rouge de Physique Atmosphérique et Solaire (GIRPAS), Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgium
2Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
3Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
4Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA, USA
5University of Colorado, CO, USA
6Lab. de Physique et Chimie de l'Environnement, CNRS – Univ. d'Orléans (UMR 6115), 45071 Orléans Cedex 2, France
7Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
8Institute for Meterorology and Climate Research (IMK), Forschungszentrum Karlsruhe and University of Karlsruhe, Karlsruhe, Germany
9National Center for Atmospheric Research, CO, USA
10Belgian Institute for Space Aeronomy, Brussels, Belgium
11University of Wollongong, Australia
12Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
13National Institute of Communications and Information Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan
14Harvard University, Cambridge, MA, USA
15Institute of Environmental Physics, University of Bremen, Germany
16Langley Research Center, VA, USA
17Alfred Wegener Insitute for Polar and Marine Research, Bremerhaven, Germany
18National Institute of Water and Atmospheric Research Ltd, Lauder,Central Otago, New Zealand
19Laboratoire d'Optique Atmosphérique, Université des sciences et technologies de Lille (UMR 8518), 59655 Villeneuve d'Ascq, France
Abstract. Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within ±20%.

Citation: Mahieu, E., Duchatelet, P., Demoulin, P., Walker, K. A., Dupuy, E., Froidevaux, L., Randall, C., Catoire, V., Strong, K., Boone, C. D., Bernath, P. F., Blavier, J.-F., Blumenstock, T., Coffey, M., De Mazière, M., Griffith, D., Hannigan, J., Hase, F., Jones, N., Jucks, K. W., Kagawa, A., Kasai, Y., Mebarki, Y., Mikuteit, S., Nassar, R., Notholt, J., Rinsland, C. P., Robert, C., Schrems, O., Senten, C., Smale, D., Taylor, J., Tétard, C., Toon, G. C., Warneke, T., Wood, S. W., Zander, R., and Servais, C.: Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations, Atmos. Chem. Phys., 8, 6199-6221,, 2008.
Publications Copernicus