Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 8, issue 12 | Copyright

Special issue: One century of solar ultraviolet research

Atmos. Chem. Phys., 8, 3283-3289, 2008
https://doi.org/10.5194/acp-8-3283-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  27 Jun 2008

27 Jun 2008

Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station

I. Ialongo, G. R. Casale, and A. M. Siani I. Ialongo et al.
  • Physics Department, Sapienza, University of Rome, Italy

Abstract. Ground-based total ozone and surface UV irradiance measurements have been collected since 1992 using Brewer spectrophotometer at Rome station. Erythemal Dose Rates (EDRs) have been also determined by a broad-band radiometer (model YES UVB-1) operational since 2000. The methodology to retrieve the EDR and the Erythemal Daily Dose (EDD) from the radiometer observations is described. Ground-based measurements were compared with satellite-derived total ozone and UV data from the Ozone Monitoring Instrument (OMI). OMI, onboard the NASA EOS Aura spacecraft, is a nadir viewing spectrometer that provides total ozone and surface UV retrievals. The results of the validation exercise showed satisfactory agreement between OMI and Brewer total ozone data, for both OMI-TOMS and OMI-DOAS ozone algorithms (biases of −1.8% and −0.7%, respectively). Regarding UV data, OMI data overestimate ground based erythemally weighted UV irradiances retrieved from both Brewer and YES Radiometer (biases about 20%). The effect of aerosols on UV comparisons was investigated in terms of Aerosol Optical Depth (AOD), showing medium-large correlation at SZA larger than 55°. Further sources of uncertainty, such as the difference in the atmospheric conditions between local noon and OMI overpass time and the OMI spatial resolution, were also discussed.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share