Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 8, issue 12 | Copyright

Special issue: One century of solar ultraviolet research

Atmos. Chem. Phys., 8, 3107-3118, 2008
https://doi.org/10.5194/acp-8-3107-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  23 Jun 2008

23 Jun 2008

Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

U. Feister1, J. Junk2, M. Woldt3, A. Bais4, A. Helbig5, M. Janouch6, W. Josefsson7, A. Kazantzidis4, A. Lindfors8, P. N. den Outer9, and H. Slaper9 U. Feister et al.
  • 1Deutscher Wetterdienst, Richard Aßmann Observatorium Lindenberg, Am Observatorium 12, 15848 Lindenberg, Germany
  • 2Public Research Centre – Gabriel Lippmann, Department of Environment and Agro-Biotechnologies (EVA), 41, rue du Bril, 4422 Belvaux Grand-Duchy of Luxembourg, Luxembourg
  • 3Brandenburgische Techn. Univ. Cottbus, Lehrstuhl für Umweltmeteorologie, Burger Chaussee 2, 03044 Cottbus, Germany
  • 4Aristotle University of Thessaloniki, Laboratory of Atmospheric Physics, 54124, Thessaloniki, Greece
  • 5Universität Trier, Fachbereich VI, Fach Umweltmeteorologie, 54286 Trier, Germany
  • 6Solar and Ozone Observatory, Czech Hydrometeorological Inst., Hvezdarna 456, 500 08 Hradec Kralove 8, Czech Republic
  • 7Swedish Meteorological and Hydrological Institute, 60176, Norrköping, Sweden
  • 8Finnish Meteorological Institute, P.O. BOX 503 (Erik Palmenin aukio 1), 00101 Helsinki, Finland
  • 9National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands

Abstract. Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model.

Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share