Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 7, issue 16
Atmos. Chem. Phys., 7, 4459-4487, 2007
https://doi.org/10.5194/acp-7-4459-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: MIPAS (Michelson Interferometer for Passive Atmosphere Sounding):...

Atmos. Chem. Phys., 7, 4459-4487, 2007
https://doi.org/10.5194/acp-7-4459-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  24 Aug 2007

24 Aug 2007

Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

M. Ridolfi1, U. Blum2, B. Carli3, V. Catoire4, S. Ceccherini3, H. Claude5, C. De Clercq6, K. H. Fricke7, F. Friedl-Vallon8, M. Iarlori9, P. Keckhut10, B. Kerridge11, J.-C. Lambert6, Y. J. Meijer12, L. Mona13, H. Oelhaf8, G. Pappalardo13, M. Pirre4, V. Rizi9, C. Robert4, D. Swart12, T. von Clarmann8, A. Waterfall11, and G. Wetzel8 M. Ridolfi et al.
  • 1Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Italy
  • 2Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen, Euskirchen, Germany
  • 3Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Firenze, Italy
  • 4Laboratoire de Physique et Chimie de l'Environnement, CNRS – Université d'Orleans, Orleans, France
  • 5DWD, Observatory Hohenpeissenberg, Germany
  • 6Institut d'Aéronomie Spatiale de Belgique, Bruxelles, Belgique
  • 7Physikalisches Institut, Universität Bonn, Bonn, Germany
  • 8Forschungszentrum Karlsruhe, IMK, Germany
  • 9CETEMPS – Dipartimento di Fisica, Università de L'Aquila, L'aquila, Italy
  • 10Service d'Aeronomie, Institut Pierre Simon Laplace/UVSQ, Verrieres-Le-Buisson, France
  • 11Earth Observation and Atmospheric Science, Space Science and Technology Department, Rutherford Appleton Laboratory, Oxfordshire, UK
  • 12National Institute for Public Health and the Environment, RIVM – LVM, Bilthoven, The Netherlands
  • 13Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Tito Scalo, Potenza, Italy

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm−1 full width half maximum, unapodized) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation.

In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above ≈10 hPa), these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.

Publications Copernicus
Special issue
Download
Citation
Share