Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 7, issue 16
Atmos. Chem. Phys., 7, 4257-4266, 2007
https://doi.org/10.5194/acp-7-4257-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Atmos. Chem. Phys., 7, 4257-4266, 2007
https://doi.org/10.5194/acp-7-4257-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  20 Aug 2007

20 Aug 2007

A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels

A. Arola1, A. Lindfors2, A. Natunen1,3, and K. E. J. Lehtinen1 A. Arola et al.
  • 1Finnish Meteorological Institute, Kuopio, Finland
  • 2Finnish Meteorological Institute, Helsinki, Finland
  • 3Tampere University of Technology, Tampere, Finland

Abstract. In spring 2006, biomass burning aerosols from eastern Europe were transported extensively to Finland, and to other parts of northern Europe. They were observed as far as in the European Arctic. In the first part of this paper, temporal and spatial evolution and transport of these biomass burning aerosols are monitored with MODIS retrieved aerosol optical depth (AOD) imagery at visible wavelengths (0.55 μm). Comparison of MODIS and AERONET AOD is conducted at Tõravere, Estonia. Then trajectory analyses, as well as MODIS Fire Mapper products are used to better understand the type and origin of the air masses. During the studied four-week period AOD values ranged from near zero up to 1.2 at 0.55 μm and the linear correlation between MODIS and AERONET was very high (~0.97). Temporal variability observed within this four-week period was also rather well explained by the trajectory analysis in conjunction with the fire detections produced by the MODIS Rapid Response System. In the second part of our study, the surface measurements of global and UV radiation at Jokioinen, Finland are used to study the effect of this haze episode on the levels of surface radiation. We found reductions up to 35% in noon-time surface UV irradiance (at 340 nm) as compared to typical aerosol conditions. For global (total solar) radiation, the reduction was always smaller, in line with the expected wavelength dependence of the aerosol effect.

Publications Copernicus
Download
Citation
Share