Simulating organic species with the global atmospheric chemistry
general circulation model ECHAM5/MESSy1: a comparison of
model results with observations

Air Chemistry Department, Max-Planck Institute of Chemistry, P.O. Box 3060, 55020 Mainz, Germany

Received: 24 November 2006 – Published in Atmos. Chem. Phys. Discuss.: 10 January 2007
Revised: 16 April 2007 – Accepted: 17 April 2007 – Published: 15 May 2007

Abstract. The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO) very well. However, for the background in the Northern Hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion), and in the high latitude Southern Hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes and isoprene are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly) by means of sensitivity studies.

1 Introduction

Ozone chemistry in the troposphere is highly dependent on precursor species like NOx (=NO+NO2), CO, methane and non-methane hydrocarbons (NMHC). These trace gases not only play an important role in ozone formation but they also control hydroxyl radicals HOx (=OH+HO2) through many complex reaction cycles (Atkinson, 2000; Logan, 1985; Houweling et al., 1998; Seinfeld and Pandis, 1997). Their reactions are strongly interconnected, and the lifetimes of the trace gases range from seconds to years. Three-dimensional (3-D) global models which calculate both transport and chemistry are required to study and/or predict the distribution and the temporal development of these species. The evaluation of such 3-D global models is a necessary task to confirm the correct performance of the model, and different evaluation studies focusing on NMHC have been published (Wang et al., 1998a; Hauglustaine et al., 1998; Poisson et al., 2000; Bey et al., 2001; Horowitz et al., 2003; von Kuhlmann et al., 2003b; Folberth et al., 2006).

Here we evaluate ECHAM5/MESSy1 (further denoted as E5/M1) with data from numerous field campaigns and measurement stations, focusing on CO and NMHCs, notably alkanes, alkenes, and a selection of oxygenated compounds.

After a brief introduction of the model setup and the observational datasets (Sect. 2), we present an overview of the reference simulation and the ability of the model to reproduce the observations (Sect. 3). A more detailed analyses of specific species (Sects. 4 to 7) follows. In the course of our analyses we deduce several hypotheses to explain the discrepancies between our model results and the observations. These hypotheses are subject of sensitivity studies, which we discuss (Sect. 8) as a basis of our conclusions (Sect. 9).

2 Model and observations

2.1 Model description and setup

E5/M1 is a combination of the general circulation model ECHAM5 (Roeckner et al., 2006) (version 5.3.01) and the Modular Earth Submodel System (MESSy, version 1.1). The implementation follows the MESSy standard (Jöckel et al., 2006). A first description and evaluation of the model system has recently been published (Jöckel et al., 2006). More details about the model system can be found...
at http://www.messy-interface.org, where a comprehensive description of the model is provided.

The results evaluated here are from the reference simulation S1, as described by Jöckel et al. (2006). The simulation period covers almost 8 years from January 1998 to October 2005. For our analysis we are focusing on the year 2000, which is expected to be represented by the model with the highest consistency, mainly because the chosen emission setup of primarily emitted species was compiled for this year. We applied the anthropogenic emissions from the EDGAR database (version 3.2 “fast-track”, van Aardenne et al. (2005)) for the year 2000 as described by Ganzeveld et al. (2006). The biogenic emissions of organic species have been compiled following Guenther et al. (1995) and are offline prescribed in the model (Ganzeveld et al., 2006) with the unique exception of isoprene, for which the emission is calculated on-line (Kerkweg et al., 2006b). A table resuming the emissions is presented in the electronic supplement of this paper (http://www.atmos-chem-phys.net/7/2527/2007/acp-7-2527-2007-supplement.pdf). Dry and wet deposition processes have been extensively described by Kerkweg et al. (2006a) and Tost et al. (2006a), respectively, while the emission procedure has been explained by Kerkweg et al. (2006b). The chemistry is calculated with the MECCA submodel by Sander et al. (2005): The chemical mechanism includes not only the standard CH4-CO-HOx-NOx background chemistry but also the oxidation of non-methane-hydrocarbons (NMHCs) up to isoprene, (see the electronic supplement of Jöckel et al., 2006, http://www.atmos-chem-phys.net/6/5067/2006/acp-6-5067-2006-supplement.zip in the same special issue).

The applied spectral resolution of the ECHAM5 base model is T42, corresponding to a horizontal resolution of the quadratic Gaussian grid of ≈2.8° × 2.8°. The applied vertical resolution is 90 layers (reaching up to 0.01 hPa in the middle of the uppermost layer) of which about 25 are located in the troposphere. No artificial boundary conditions are assumed at the tropopause and the same chemical scheme has been applied throughout the model atmosphere. The model setup includes feedbacks between chemistry and dynamics via the radiation calculations.

The model dynamics has been nudged in the free troposphere (Jeuken et al., 1996; Jöckel et al., 2006; Lelieveld et al., 2007) towards the analysis data of the ECMWF operational model (up to 100 hPa) in order to represent the realistic meteorology in the troposphere. The nudging is weak enough to not deteriorate the self-consistent model dynamics, but still allows a direct comparison of the model results with observations.

2.2 Observations

For our comparison we applied two types of data sets: aircraft and surface measurements. Although the aircraft measurements (Emmons et al., 2000) cover only limited periods, they provide valuable information about the vertical distribution of the analysed trace gases. The surface measurements consist of a large number of multi-year surface observations collected from the literature (Solberg et al., 1996). They, in contrast to the aircraft observations, have limited spatial extension, though they cover an entire (climatological) year and are well suited for the analysis of the seasonal cycle. An additional important global dataset of surface measurements is the NOAA/CMDL flask network (Novelli et al., 1998), which encompasses multiple years of CO measurements.

Both dataset types are important for a meaningful evaluation of the model. The aircraft measurements are compared only with the year 2000 of the model simulation, sampled in the same area and time period of the observations. The surface measurements are compared with climatological monthly averages of the model results, sampled at the lowest level of the terrain following vertical hybrid-pressure systems. The NOAA/CMDL flask measurements are compared with model calculated monthly averages.

For a quantitative statistical analysis, correlations between the model results and the aircraft observations are calculated with respect to the altitude, while the correlations between the model results and the surface measurements are calculated with respect to time.

3 Overview of the results

To first provide an overview of the overall model performance regarding important O3 precursors, we statistically compare model results and observations of the following species: alcanes and alcanes with up to three carbon atoms, oxygenated compounds (methanol, acetone, formaldehyde, acetaldehyde), hydroperoxide and isoprene. Aircraft observations are additionally compared to model results for methane, ozone and nitric acid.

3.1 Aircraft measurements

Table 1 summarises the comparison of E5/M1 model results with aircraft measurements. Figure 1 depicts the corresponding Taylor diagram, visualising the quality of the simulation for several tracers in a single diagram. It shows the correlation coefficient between model results and observations (R) by the angle to the ordinate. The standard deviation of the model normalised to the standard deviation of the observations (σmodel/σobs) is the distance from the origin. The observations are therefore located at a correlation of 1 and a normalised standard deviation of 1. The distance between a point and this “ideal” point is the centered pattern root mean square. The better a model reproduces the observations, the closer are the resulting points located to this “ideal” point. A detailed explanation of this diagram has been presented by Taylor (2001).
Table 1. Summary of the correlation coefficients (R) and linear regression analyses of model results versus aircraft observations (model = $m \times$ measurement + b). Bias and b are in pmol/mol; bias = model results minus observations.

<table>
<thead>
<tr>
<th>trace gas</th>
<th>num. obs.</th>
<th>bias</th>
<th>m</th>
<th>b</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_4$</td>
<td>454</td>
<td>-23.87</td>
<td>0.26</td>
<td>9.975</td>
<td>0.409</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>473</td>
<td>-174.03</td>
<td>0.69</td>
<td>78.692</td>
<td>0.799</td>
</tr>
<tr>
<td>C$_3$H$_6$</td>
<td>332</td>
<td>-11.50</td>
<td>0.14</td>
<td>0.267</td>
<td>0.410</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>472</td>
<td>-18.82</td>
<td>0.92</td>
<td>-5.755</td>
<td>0.768</td>
</tr>
<tr>
<td>CH$_3$COCH$_3$</td>
<td>246</td>
<td>-376.85</td>
<td>0.42</td>
<td>-28.717</td>
<td>0.385</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>116</td>
<td>-447.82</td>
<td>0.18</td>
<td>255.18</td>
<td>0.313</td>
</tr>
<tr>
<td>CH$_3$OOH</td>
<td>366</td>
<td>-13.19</td>
<td>0.71</td>
<td>94.598</td>
<td>0.718</td>
</tr>
<tr>
<td>HCHO</td>
<td>213</td>
<td>6.41</td>
<td>0.74</td>
<td>55.786</td>
<td>0.631</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>411</td>
<td>3.73</td>
<td>0.63</td>
<td>275.81</td>
<td>0.552</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>416</td>
<td>-13.05</td>
<td>0.53</td>
<td>63.115</td>
<td>0.337</td>
</tr>
<tr>
<td>O$_3$</td>
<td>506</td>
<td>118.35</td>
<td>1.78</td>
<td>-28.464</td>
<td>0.544</td>
</tr>
<tr>
<td>PAN</td>
<td>395</td>
<td>141.97</td>
<td>0.71</td>
<td>188.99</td>
<td>0.268</td>
</tr>
<tr>
<td>CO</td>
<td>456</td>
<td>-8621.8</td>
<td>0.51</td>
<td>36.381</td>
<td>0.633</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>334</td>
<td>-1103.6</td>
<td>0.66</td>
<td>588.746</td>
<td>0.808</td>
</tr>
</tbody>
</table>

Table 2. Correlation coefficients and linear regression analyses between the model results and the aircraft observations, both weighted with relative uncertainties (bias = model results minus observations).

<table>
<thead>
<tr>
<th>trace gas</th>
<th>num. obs.</th>
<th>bias1</th>
<th>bias1</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_4$</td>
<td>454</td>
<td>-13.37</td>
<td>-921.3</td>
<td>0.624</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>473</td>
<td>-0.76</td>
<td>-196.57</td>
<td>0.948</td>
</tr>
<tr>
<td>C$_3$H$_6$</td>
<td>332</td>
<td>-4818.76</td>
<td>-78.982</td>
<td>0.996</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>472</td>
<td>-0.49</td>
<td>-55.21</td>
<td>0.985</td>
</tr>
<tr>
<td>CH$_3$COCH$_3$</td>
<td>246</td>
<td>-3.46</td>
<td>-648.6</td>
<td>0.767</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>116</td>
<td>-2.03</td>
<td>-724.54</td>
<td>0.599</td>
</tr>
<tr>
<td>CH$_3$OOH</td>
<td>366</td>
<td>0.05</td>
<td>10.72</td>
<td>0.941</td>
</tr>
<tr>
<td>HCHO</td>
<td>213</td>
<td>0.20</td>
<td>32.00</td>
<td>0.760</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>411</td>
<td>0.07</td>
<td>36.977</td>
<td>0.944</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>416</td>
<td>-0.15</td>
<td>-28.12</td>
<td>0.767</td>
</tr>
<tr>
<td>O$_3$</td>
<td>506</td>
<td>0.14</td>
<td>314.12</td>
<td>0.487</td>
</tr>
<tr>
<td>PAN</td>
<td>395</td>
<td>1.17</td>
<td>205.08</td>
<td>0.999</td>
</tr>
<tr>
<td>CO</td>
<td>456</td>
<td>-0.10</td>
<td>-2692.2</td>
<td>0.818</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>334</td>
<td>-0.74</td>
<td>-111.17</td>
<td>0.810</td>
</tr>
</tbody>
</table>

1 in units of standard deviation

Appendix D), for a detailed explanation of these calculations.

With this approach, the locations with high variability have less weight. This allows us to compare values which are more representative for the average conditions and to eliminate specific episodes that cannot be expected to be reproduced by the model. The results of this recalculation are shown in Fig. 2 and listed in Table 2.

According to this analysis, the discrepancies between model results and measurements are smaller than the uncertainties, if the absolute value of the weighted bias (i.e., in units of the normalised standard deviation, Fig. 2 and Table 2) for a specific tracer is less than one. A high weighted correlation in combination with a weighted bias lower than one indicates that the model is able to reproduce the observed mixing ratios on average. This is not the case for C$_2$H$_4$, C$_3$H$_6$, CH$_3$COCH$_3$, CH$_3$OH and PAN. C$_3$H$_6$ and CH$_3$OH are not even shown in Fig. 2; due to their very high normalised standard deviations they are outside the shown range. The inability of the model to reproduce the vertical distribution of these compounds, as indicated by the relatively low correlation with all aircraft measurements included in the database, requires a more detailed analysis. This will be conducted in Sect. 8.

3.2 Surface measurements

Figures 3–4 and Tables 3–4 summarise the comparison between the model simulation (climatological monthly
Fig. 2. Taylor diagram of the comparison between aircraft measurements and model results, both weighted with relative uncertainties (Jöckel et al., 2006). The biases are listed in parentheses (units of standard deviation). The empty box represents the measurements.

Table 3. Summary of the correlation coefficients and linear regression analyses of model results versus station observations (model = m × measurement + b). Bias and b are in nmol/mol; bias = model results minus observations.

<table>
<thead>
<tr>
<th>trace gas</th>
<th>num. obs.</th>
<th>bias</th>
<th>m</th>
<th>b</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂H₄</td>
<td>138</td>
<td>0.20</td>
<td>0.534</td>
<td>0.504</td>
<td>0.396</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>150</td>
<td>0.24</td>
<td>0.828</td>
<td>0.544</td>
<td>0.539</td>
</tr>
<tr>
<td>C₃H₆</td>
<td>137</td>
<td>0.01</td>
<td>0.658</td>
<td>0.060</td>
<td>0.502</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>150</td>
<td>0.61</td>
<td>1.130</td>
<td>0.508</td>
<td>0.424</td>
</tr>
<tr>
<td>CH₃CHO</td>
<td>77</td>
<td>0.15</td>
<td>0.197</td>
<td>0.582</td>
<td>0.082</td>
</tr>
<tr>
<td>CH₃COCH₃</td>
<td>81</td>
<td>−0.08</td>
<td>0.528</td>
<td>0.459</td>
<td>0.508</td>
</tr>
<tr>
<td>HCHO</td>
<td>65</td>
<td>−0.11</td>
<td>0.470</td>
<td>0.495</td>
<td>0.553</td>
</tr>
<tr>
<td>PAN</td>
<td>48</td>
<td>0.34</td>
<td>1.809</td>
<td>0.190</td>
<td>0.538</td>
</tr>
<tr>
<td>CO¹</td>
<td>4224</td>
<td>5.675</td>
<td>0.976</td>
<td>6.499</td>
<td>0.672</td>
</tr>
</tbody>
</table>

¹ from NOAA/CMDL flask network (see Sect. 4)

The averages of the 7 years 1998–2004) and the climatology derived from the station measurements.

As can be seen in Fig. 3 and Table 3, the model generally overestimates the mixing ratios of these trace gases at the surface, with the exception of acetone (CH₃COCH₃) and formaldehyde (HCHO). As further shown in Fig. 4 and Table 4, only the biases of ethene (C₂H₄), propene (C₃H₆) and PAN exceed one normalised standard deviation, and consequently the discrepancy between the model results and the observations cannot be explained by the model variability and/or the variability of the observations. Furthermore, Fig. 3 shows that the amplitude of the seasonal cycle is underestimated for many NMHCs, since the absolute value of the normalised standard deviation is lower than 1. We hence infer that the model is able to reproduce (with the exception of the aforementioned trace gases) the observed magnitude of the tracer mixing ratios and the phase of the seasonal cycle, though with a generally underestimated amplitude.

Nevertheless, the model underestimates NMHCs in comparison to the aircraft measurements (Table 1), mainly in the upper troposphere. Jöckel et al. (2006) showed that the global air-mass weighted average OH abundance in the...
middle and upper troposphere in the simulation is lower than that calculated by Spivakovsky et al. (2000). This implies that the oxidation reactions are probably not responsible for the underestimation of NMHCs. Rather, there are indications that the convection scheme applied in the model does not sufficiently transport these species to the upper troposphere (Tost, 2006; Tost et al., 2006b).

4 Carbon monoxide, CO

Carbon monoxide provides the most important sink for OH (Lelieveld et al., 2002; Logan et al., 1981; Thompson, 1992). A correct simulation of this tracer is very important for studies of atmospheric oxidants. The emissions of CO applied in the present simulation have been described by Ganzeveld et al. (2006, and references therein). There are large uncertainties with respect to the amount of CO globally lost by dry deposition (e.g., 115–230 Tg/yr (Sanhueza et al., 1998), 540±430 Tg/yr (Moxley and Cape, 1997), 150 Tg/yr (von Kuhlmann et al., 2003b)). In a recent study Horowitz et al. (2003) estimated the global dry deposition of CO to be only around 2 Tg/yr. Following this study, in our model simulation the dry deposition of CO was switched off. Although the simulated CO will be influenced by taking into account the process of dry deposition, the effect is potentially significant for the budget only in very remote regions. We will investigate this hypothesis further in Sect. 8.

Thanks to the large dataset of CO observations available from the NOAA/CMDL network (Novelli et al., 1998), a more detailed analysis is possible for CO than for the other studied trace gases. This allows the direct comparison of 7 years (1998–2004) of monthly averaged model results with the corresponding observations. It cannot be expected that the model simulation fully reproduces the inter-annual variability due to the prescribed climatological emissions for the year 2000. Nevertheless, the meteorological inter-annual variability is included through the applied nudging procedure.

The correlation between the model results and the observations is generally good (see Sect. 3.2) with $R^2=0.67$.

As evident in Fig. 5, where data from selected locations are shown, the phase of the seasonal cycle of CO is well reproduced (e.g., Alert, Canada (ALT), or Mace Head, Ireland (MID)). The Taylor diagram in Fig. 6 completes the picture and confirms the high correlation between the model results and the measurements. The correlation is high at remote locations (south of 60°S) with $R\approx0.9$, indicating that the main processes controlling the CO abundance are well represented by the model. However, at locations between 20°N and 40°N the correlation is lower, because these regions are strongly influenced by local emissions, including industry and biomass burning. Even though the amplitude of the seasonal cycle is well reproduced by the model at some locations (e.g., Mauna Loa, Hawaii, (MLO)), it overall tends to be underestimated (see Fig. 6, normalised standard deviation ≤ 1). In the Northern Hemisphere (e.g., Zeppelin, (ZEP) or Alert, Canada, (ALT)) the maximum during winter seems to be systematically underestimated.

Looking further at the overall biases of the model simulation compared to the observations, some of the discrepancies between model results and observations can be resolved. Figure 7 depicts the relative biases at all NOAA/CMDL stations. Strong positive biases are present mainly in polluted regions where the model resolution is not sufficient to reproduce the details of the source distributions and the meteorology. As pointed out by Haas-Laursea and Hartley (1997), the flask samples have been collected under non-polluted conditions, i.e., for stations close to local sources only certain wind directions have been selected to avoid local contamination. The model results are not filtered in the same way, and at the rather low model grid resolution, local sources are sometimes located in the same grid box as the measurement station. Therefore, the simulated mixing ratios are potentially higher than the observed. Sampling the simulated data one grid-box upwind of the polluted locations, the correlation between model results and observations increases drastically and the overestimation by the model almost disappears (Fig. 5).

In contrast to polluted regions, the model tends to underestimate CO compared to observations in remote regions of the Northern Hemisphere (Fig. 7). This can probably be attributed to underestimated anthropogenic emissions, which relatively strongly influence the background mixing ratio in the Northern Hemisphere. In fact, in the present simulation,
Table 5. Budget of different trace gases in the E5/M1 simulation (this work) compared to previous studies.

<table>
<thead>
<tr>
<th>tracer</th>
<th>emission (Tg/yr) this work</th>
<th>emission (Tg/yr) literature</th>
<th>dry deposition (Tg/yr) this work</th>
<th>dry deposition (Tg/yr) literature</th>
<th>wet deposition (Tg/yr) this work</th>
<th>wet deposition (Tg/yr) literature</th>
<th>burden (Tg) annual average this work</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_2)H(_4)</td>
<td>26.35</td>
<td>19.55(^{b})–22.33(^{f})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.12</td>
</tr>
<tr>
<td>C(_2)H(_6)</td>
<td>12.46</td>
<td>11.95(^{f})–12.26(^{h})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.51</td>
</tr>
<tr>
<td>C(_3)H(_8)</td>
<td>9.92</td>
<td>6.95(^{b})–9.87(^{f})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
</tr>
<tr>
<td>CH(_3)COCH(_3)</td>
<td>47.96</td>
<td>95(^{i})</td>
<td>24.48</td>
<td>12.96(^{a})</td>
<td>–</td>
<td>–</td>
<td>2.23</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>77.74</td>
<td>312(^{f})</td>
<td>42.16</td>
<td>31.35(^{a})</td>
<td>–</td>
<td>12(^{c})</td>
<td>2.46</td>
</tr>
<tr>
<td>HCHO</td>
<td>7.78</td>
<td>6.97(^{f})</td>
<td>43.35</td>
<td>45.73(^{a})</td>
<td>1.74</td>
<td>31.62(^{a})</td>
<td>1.05</td>
</tr>
<tr>
<td>H(_2)O(_2)</td>
<td>–</td>
<td>–</td>
<td>142.12</td>
<td>170.70(^{a})</td>
<td>194.22</td>
<td>244.52(^{a})</td>
<td>4.07</td>
</tr>
<tr>
<td>CO</td>
<td>see Table 6</td>
<td>see Sect. 8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>375.93</td>
</tr>
</tbody>
</table>

\(^{a}\) von Kuhlmann et al. (2003b)
\(^{b}\) Jacob et al. (2002)
\(^{c}\) Jacob et al. (2005)
\(^{d}\) Heikes et al. (2002)
\(^{e}\) Arnold et al. (2005)
\(^{f}\) Horowitz et al. (2003)
\(^{g}\) Park et al. (2004a)
\(^{h}\) Folberth et al. (2006)
\(^{i}\) Jacob et al. (2002), only terrestrial

as shown in Table 6, CO emissions from fossil fuel usage are at the lower end of the range of estimates in the literature.

In the Southern Hemisphere the model simulation produces higher mixing ratios of CO than observed (Fig. 7). This is particularly evident for locations south of 50° S. This significant bias is especially visible in Fig. 5, for Palmer station, Antarctic (PSA), and Halley Bay, Antarctic (HBA). This discrepancy is present in many other models (Hauglustaine et al., 1998; Wang et al., 1998b; Bey et al., 2001; von Kuhlmann et al., 2003b; Horowitz et al., 2003; Park et al., 2004b; Folberth et al., 2006) and unexplained so far.

The hypothesis of underestimated emissions in polluted regions (i.e., primarily from fossil fuel usage) is supported by the analysis of the vertical profiles from the aircraft observations. Figure 8 (TRACE-P, China or PEM-WEST-B, China) shows that CO is clearly underestimated near China, especially in the planetary boundary layer, where the influence of the emissions is largest. This underestimation is also present further downwind (PEM-WEST-B, Philippine Sea, TRACE-P, Guam), however, it almost disappears in the central Pacific region (TRACE-P, Hawaii). Interestingly, the correct representation of carbon monoxide in East Asia is a problem for many atmospheric chemistry models. Kiley et al. (2003) demonstrated that many models are underestimating CO in the western Pacific region. Wang et al. (2004, and references therein) performed an inverse modelling analysis and calculated that an increase of the CO emissions in East Asia of around 45% from the a priori estimate (Streets et al., 2003) is required to match the observations. More recently, Streets et al. (2006) estimated 116 Tg/yr for the year 2000 and 157 Tg/yr for the year 2001 of CO emissions from China with an uncertainty of 68%.

5 Non-methane hydrocarbons

Comparison of the simulated non-methane hydrocarbon mixing ratios with observations yields a dual picture (see Sect. 3). Some of the simulated trace gases are in particularly good agreement with the measurements (e.g., propane (C\(_3\)H\(_8\)), while others are largely uncorrelated with measurements (e.g., ethene (C\(_2\)H\(_4\)) and propene (C\(_3\)H\(_6\))). In the case of C\(_3\)H\(_6\), the simulation does not reproduce the observed profiles. The simulated values are completely out of range of the
Fig. 5. Comparison of simulated (black) and observed (red, Novelli et al. (1998)) CO mixing ratios in nmol/mol (ordered by latitude). The green lines show the model results sampled from the corresponding grid-boxes upwind (see text).

Table 6. Different estimates of CO emissions in Tg/yr. The total includes also other sources (e.g. biogenic).

<table>
<thead>
<tr>
<th>Source</th>
<th>Brasseur et al. (1998)</th>
<th>Bey et al. (2001)</th>
<th>von Kuhlmann et al. (2003a)</th>
<th>Park et al. (2004a)</th>
<th>this work</th>
<th>range^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel</td>
<td>281</td>
<td>388</td>
<td>400</td>
<td>384</td>
<td>281</td>
<td>300–600</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>661</td>
<td>522</td>
<td>748</td>
<td>746</td>
<td>702</td>
<td>300–900</td>
</tr>
<tr>
<td>Total</td>
<td>1218</td>
<td>1043</td>
<td>1261</td>
<td>1131</td>
<td>1096</td>
<td>656–1730</td>
</tr>
</tbody>
</table>

^a from Bates et al. (1995)
observed values, even including measurement uncertainties and variability (see bias in Sect. 3). Moreover, the simulated and observed vertical profiles are uncorrelated (see Fig. 2), i.e., the model is unable to reproduce the shape of the profiles.

5.1 Alkanes (ethane C\textsubscript{2}H\textsubscript{6} and propane C\textsubscript{3}H\textsubscript{8})

Among all considered NMHCs, the alkanes are best reproduced by the model. The overall correlation ($R^2>0.75$, see Table 1) indicates a very good agreement between these simulated trace gases and the respective observations. Table 2 shows that the model results are well within the range of the measurements.

In the case of ethane ($R^2=0.8$), the improvement compared to von Kuhlmann et al. (2003b, $R^2=0.75$) is mainly due to different spatial distribution patterns of the emissions. For example, the total emission of C\textsubscript{2}H\textsubscript{6} due to biomass burning in E5/M1 (Ganzeveld et al., 2006) is about 0.87 Tg/yr lower than in von Kuhlmann et al. (2003a), and...
the anthropogenic emissions are about 0.75 Tg/yr higher. Although the total is essentially unchanged, the different distribution improves the quality of the simulation. However, the model simulation is at the lower end of the measurements, especially when compared with the TOPSE campaign (Fig. 9). The anthropogenic emissions in the model, in fact, are not sufficient to perfectly match the observed values. This is clearly visible when the model results are compared to surface measurements (Fig. 10). Ethane is underestimated by the model at the surface in North America (Fraserdale, Lac la Flamme) mainly due to an underestimation of the emissions compiled in the EDGAR database (Jacob et al., 2002; Poisson et al., 2000). Furthermore, the amplitude of the seasonal cycle is not well reproduced at these locations, with problems mainly in reproducing the maximum in winter. The simulation reproduces biomass burning plumes observed in the TRACE-A campaign (African coast, Fig. 9). This campaign took place in the dry season of the Southern Hemisphere and some flight measurements were influenced by biomass
burning. Problems occur in the upper troposphere, where the model underestimates the C_2H_6 mixing ratio by a factor of 2. Pickering et al. (1996) report that the convection frequency during this campaign was unusually high, which could explain the disagreement between the model and the observations.

For propane, from Tables 1 and 2 we infer that the simulated vertical profiles are in good agreement with the observations (Fig. 11). This agreement is mainly achieved by the realistic representation of the emissions. As pointed out by Wang and Zeng (2004), an increase of 14±5% of the emission inventory used by Bey et al. (2001) (9.66 Tg/yr) was required to correctly match the observations, for an emission total of 11 Tg/yr. In our simulation the total emission was 11.97 Tg/yr (see Table 5). This amount is still lower than the suggested values present in literature (e.g., 13.46 Tg/yr calculated by Jacob et al. (2002)).

However, even though the emissions are in the suggested range, the simulated mixing ratios are at the lower end of the measurement range (Fig. 11 and Table 1).

5.2 Alkenes (ethene C_2H_4 and propene C_3H_6)

The alkenes, in contrast to the alkanes, are generally poorly reproduced by the model. The simulated mixing ratios are usually lower than the measurements (Table 1).

Ethene (C_2H_4) has a poor correlation, both, with surface and aircraft measurements (Tables 2 and 4). This low correlation is due to an overestimation of the mixing ratio at the surface (Fig. 12), where the seasonal cycle is not reproduced with a peak in the mixing ratio during summer. The vertical profiles (Fig. 13) are mostly high biased (e.g., TOPSE-Mar, Boulder), with the largest differences between model results and observations occurring at the surface. In remote regions, where the direct influence of emissions is lower, the model is, nevertheless, at the lower end of the range of observations, with frequent underestimates (TRACE-A, Brazil Coast and South Atlantic).

The emissions from oceans appear too high (see Fig. 13, PEM-Tropics-B, Fiji) and a reduction in the model likely improves the simulation of ethene.

Propene is also not very well simulated by the model. The low correlation (Table 1) indicates a wrong representation of the vertical profiles. This poor representation cannot be reconciled with the variability of the model or measurement.

Fig. 11. Vertical profiles of C_3H_8 (in pmol/mol) for some selected campaigns. Symbols and colors as in Fig. 8.

Fig. 12. As Fig. 10, for C_2H_4.

uncertainties, since the bias in Table 2 is much larger than one standard deviation. From Fig. 14, the erroneous description of this trace gas in the model is evident. The very high mixing ratio in the boundary layer (2–3 times the observed one) in open ocean regions (PEM-TROPICS-A, all locations) indicates a too strong emission of this tracer from the ocean. In E5/M1 the upper limit of the suggested emission from Bates et al. (1995) has been applied (1.27 Tg/yr).

This overestimation is not so evident in continental regions more strongly influenced by anthropogenic (Fig. 14, PEM-WEST-B, Japan or Fig. 15, Izaña, Lac la Flamme) or biomass burning sources (Fig. 14, TRACE-A, West Africa Coast). Figure 14 shows that outside the planetary boundary layer (PBL), above 2–3 km, the simulated tracer is nearly depleted, in contrast to the observations.

This points to a wrong simulation of the sinks (too fast) which could explain the low values simulated outside the PBL. This tracer is not subject to either wet (due to its low solubility) nor dry deposition and is only removed by reactions with OH, NO₃, and O₃, the latter two at least two orders of magnitude slower than the first. The rate coefficient used for the reaction C₃H₆+OH is taken from the IUPAC
recommendation of 1999 (Atkinson et al., 1999, and references therein). A new recommendation suggests a slightly different dependence of the high pressure channel on temperature (Atkinson et al., 2005; Vakhtin et al., 2003, and references therein). As shown in Fig. 16, the new reaction coefficient is lower than the previously estimated. Although the difference between the two estimates at high temperature is not extreme, our results indirectly support the revision of the reaction coefficient. This will be discussed further in Sect. 8.

6 Isoprene

In a test simulation of the first year, the resulting isoprene emission was 580 TgC/yr. This is about 80 TgC larger compared to the offline calculated inventory by Guenther et al.
(1995), which formed the basis for the implementation of the online calculations of biogenic NMHC emissions in E5/M1 (Ganzeveld et al., 2006; Kerkweg et al., 2006b).

As shown by Houweling et al. (1998), the use of the Guenther et al. (1995) isoprene inventory of 500 TgC/yr results in a significant overestimation of the simulated tropical Planetary Boundary Layer (PBL) mixing ratios. Consequently, a commonly applied approach in atmospheric chemistry studies, which do not focus on isoprene, is to use a smaller global flux. Different values for the isoprene total emissions have been previously used: 220 TgC/yr (Brasseur et al., 1998), 350 TgC/yr (von Kuhlmann et al., 2004), 410 TgC/yr (Horowitz et al., 2003) and 460 TgC/yr (Lathière et al., 2006). Since the main focus of the conducted simulation with E5/M1 has been the evaluation of the global ozone burden and mixing ratios, isoprene fluxes have been scaled to achieve a reduced global annual emission flux. Since isoprene emissions are on-line calculated, they exhibit an interannual variability, resulting in a global emission between 305 and 340 TgC/yr during the 8 years of the simulation.

7 Oxygenated compounds

Oxygenated compounds are partly soluble and are influenced by wet deposition (Tost et al., 2006a) (e.g. CH₃OOH), as well as oxidation by OH, and some of them by photolysis (HCHO, CH₂CHO, CH₃OOH and CH₃COCH₃). Reproducing the vertical profiles of these tracers is therefore challenging, and the identification of the cause of discrepancies between model results and observations is difficult.

7.1 Hydrogen peroxide, H₂O₂

Hydrogen peroxide is produced by the self reaction of HO₂ and can photolysie to produce OH. Hence it is useful as indicator of HOₓ in the troposphere.

As shown in Fig. 17, the vertical profiles of H₂O₂ are reasonably well reproduced by the model at different locations and for different field campaigns. Discrepancies from the observations are difficult to define due to its high variability. In fact, from Table 2, the correlation (uncertainty weighted calculation) between model results and measurements is very high ($R^2≈0.94$), mainly because the observed H₂O₂ shows a very high variability.

As shown in Fig. 17, H₂O₂ is overestimated over Boulder (TOPSE campaign) in the reference simulation. In Fig. 9, at the same location (Boulder, TOPSE campaign), the C₂H₆ is underestimated and further analysis revealed the same for CO. This implies an overestimation of the HOₓ radicals in in the simulation $S1$ and a too strong oxidation capacity of the atmosphere in this region.

7.2 Acetaldehyde, CH₃CHO

This oxygenated compound is produced from the oxidation of a variety of hydrocarbons (Lewis et al., 2005) and it can produce HOₓ and PAN precursors.

The analysis shows that the model results agree within a factor of two (overestimation) with the observations, although the seasonal cycle is not well reproduced (Fig. 18). This is confirmed by Table 4, which shows that at the surface the amplitude of the seasonal cycle is correct (if we consider the uncertainties), but with the wrong phase ($R^2≈0.298$).

Only a few aircraft measurements are available of this trace gas. Williams et al. (2001) reported a mixing ratio in Suriname in the boundary layer of about 1.7 nmol/mol and 0.8 nmol/mol in the free troposphere. The model underestimates these mixing ratios by a factor of 10. During the PEM-TROPICS-B campaign (Singh et al., 2001) over the open ocean mixing ratios between 60 and 100 pmol/mol have been measured, about 4 times higher than simulated. Singh et al. (2001) postulate some sources from the ocean (Zhou and Mopper, 1997), though more measurements are required to better constrain the abundance of this tracer.
7.3 Methanol, CH$_3$OH

Even though methanol is one of the most abundant organic trace gases in the atmosphere, its global cycle is not well understood (Heikes et al., 2002; Singh et al., 2000; Jacob et al., 2005). It influences the upper tropospheric photochemistry because of its oxidation to formaldehyde (Palmer et al., 2003; Singh et al., 2003; Jacob et al., 2005). Unfortunately, the distribution and magnitude of the sources and sinks are largely unknown (Tie et al., 2003; Singh et al., 2004; Galbally and Kirstine, 2002). Due to these high uncertainties, emissions from the ocean have not been included in our simulation, though indicated by previous studies (Jacob et al., 2005; Heikes et al., 2002).

Compared to other tracers, relatively few observations of methanol are available (PEM TROPICS-B and TRACE-P campaigns). As noted in Sect. 3, the correlation between model results and measurements is very low ($R^2=0.313$), and the vertical profiles are not reproduced by the model (Figs. 2 and 19). Wet deposition has not been taken into account for this tracer (Tost et al., 2006a), however, only small differences of $\approx 5\%$ are expected by accounting for this process (Heikes et al., 2002; Galbally and Kirstine, 2002; von Kuhlmann et al., 2003b). The simulated total dry deposition of 42.16 Tg/yr is well within the suggested values in the literature (e.g. 35–210 Tg/yr (Heikes et al., 2002), 11–43 Tg/yr (Galbally and Kirstine, 2002), 32–85 Tg/yr (Tie et al., 2003), 37 Tg/yr (von Kuhlmann et al., 2003b) and 55 Tg/yr (Jacob et al., 2005)). Thus, underestimated emission fluxes or incomplete description of the chemistry are more likely responsible for the wrong representation. A total emission of 77 Tg/yr for CH$_3$OH has been used, as suggested by EDGAR (with 60 Tg/yr of biogenic emissions). Note, however, that a recent study by Jacob et al. (2005) recommends a total emission of 168 Tg/yr with 151 Tg/yr of biogenic emissions.

7.4 Formaldehyde, HCHO

Although formaldehyde is chemically formed by methanol, the low production rate from CH$_3$OH$+OH \rightarrow$HCHO$+HO_2$ ($k=5 \times 10^{-13} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$) indicates that this reaction is not essential for a realistic simulation of formaldehyde and that the wrong representation of methanol is not strongly influencing HCHO (Stickler et al., 2006). The model, in fact, predicts the observed mixing ratios of this trace gas very well (Fig. 20 and Sect. 3).

The simulation is in good agreement with station measurements, and the amplitude of the seasonal cycle is well reproduced at the surface (Figs. 3 and 4), although with a smaller amplitude than observed. From the comparison with the aircraft measurements (Fig. 20 and Sect. 3) we conclude that the simulation of HCHO satisfactorily reproduces the observations. Particularly good agreement is obtained for the PEM-TROPICS-B field campaign, where more than 20 measurements per location are available. A systematic underestimation of the measurements is observed at the surface for the TOPSE-A campaign, only for the location Thule (Fig. 20). This can potentially be explained by the absence of emissions of HCHO from snow (Riedel et al., 2005, and references therein). Other models (Fried et al., 2003) also simulate large disagreements compared to measurements for the TOPSE-A campaign.
Vertically, acetone plays a significant role in the upper tropospheric HOX budget due to its photolysis (Singh et al., 1995; McKeen et al., 1997; Müller and Brasseur, 1995; Wennberg et al., 1998; Jaeglé et al., 2001). Moreover, this tracer is essential to correctly describe the ozone enhancement in flight corridors (Brühl et al., 2000; Folkins and Chatfield, 2000).

Comparing this simulated tracer with the station observations, we conclude that at the surface this tracer is well simulated. Problems in reproducing the seasonal cycle are evident for only two locations (see Fig. 22), Zeppelin and Ispra, but Table 3 shows that acetone has one of the highest correlation coefficients and lowest biases compared to other tracers. However, the annual cycle seems to be underestimated (see Figs. 3 and 4). Folberth et al. (2006) suggested biogenic emissions of 55.9 Tg yr⁻¹, more than the 42 Tg yr⁻¹ used in this simulation.

As also seen for HCHO, this is not the only species with which we have problems at this location, and we cannot rule out that the Ispra site is unrepresentative for the area of one model grid-box.

Although acetone is well reproduced at the surface, large discrepancies with observations are present in the vertical profiles. As shown in Sect. 3, the correlation with the aircraft measurements is low ($R^2=0.385$), and the vertical profile is not reproduced (bias in Fig. 2). Large discrepancies with observations (Fig. 23) are present in the free troposphere. A comparison of simulated acetone with aircraft measurements is shown in Fig. 24, where the colour code indicates the vertical distribution of the measurements and the corresponding model results.

The differences between model results and observations appears to increase with altitude. The shape of the simulated vertical profiles suggest a potential misrepresentation of the photolysis of this tracer. Measurements made by Blitz et al. (2004) indicate that the quantum yield (and therefore the photolysis rate) of acetone is lower than previously assumed. A reduction would increase the mixing ratio of this tracer and the simulation would then agree better with the observations. Furthermore, as shown by Arnold et al. (2004), this new quantum yield may significantly change the contribution of CH₃COCH₃ to the HOX budget. Arnold et al. (2005) showed that the new quantum yield decreases the global loss of acetone by a factor of ≈ 2 and by 80–90% in the cold upper troposphere.

Fig. 20. Vertical profiles of HCHO for some selected campaigns (unit in the labels). Symbols and colours as in Fig. 8.

Fig. 21. As Fig. 10, for HCHO.
Fig. 22. As Fig. 10, for CH$_3$COCH$_3$.

The wrong vertical distribution of acetone in our model simulation can also explain the poor correlation of the simulated PAN with the aircraft measurements. As for acetone, the correlation with surface measurements is high, while the simulated vertical profiles strongly deviate from the observed profiles. However, it has to be stressed that the PAN mixing ratios are generally overestimated by the model simulation (Table 2), in contrast to acetone, for which the mixing ratio is systematically underestimated by the model.

Fig. 23. Vertical profiles of CH$_3$COCH$_3$ (in pmol/mol) for some selected campaigns. Symbols and colours as in Fig. 8.

8 Sensitivity studies

To test the hypotheses posed so far, three additional simulations have been performed for the year 2000. The first simulation (denoted as $S1a$) is based on the reference simulation $S1$, presented by Jöckel et al. (2006), with the following modifications:

1. Simulation of dry deposition of CO, based on the few available measurements (Conrad and Seiler, 1985; Sanchez et al., 1998). We used a constant soil deposition velocity of 0.04 cm/s limited to regions where the
temperature is higher than 5°C and the relative humidity is higher than 40% in order to exclude cold tundra and desert soils (Lawrence et al., 1999);

2. Increase of the CO fossil fuel emission over China by 45% according to Kiley et al. (2003); The new total amount of the CO emission is 1130 Tg/yr, with 314 Tg/yr due to fossil fuel usage;

3. Changed reaction coefficient for the reaction \(\text{C}_3\text{H}_6 + \text{OH} \) as described in Sect. 5.2 (Atkinson et al., 2005);

4. Decrease of the oceanic emission of \(\text{C}_2\text{H}_4 \) as suggested by Plass-Dülmer et al. (1995);

5. Increase of the \(\text{CH}_3\text{OH} \) biogenic emissions to 151 Tg/yr (Jacob et al., 2005);

6. Increase of the biogenic emissions of \(\text{CH}_3\text{COCH}_3 \) to 55.93 Tg/yr following Folberth et al. (2006);

7. New photolysis of \(\text{CH}_3\text{COCH}_3 \) as described by Blitz et al. (2004), Arnold et al. (2004) and Arnold et al. (2005).

In two more sensitivity studies, both based on \(S1a \), we test the importance of dry deposition. In simulation \(S1b \), dry deposition of CO (point 1 of \(S1a \)) is switched off. In simulation \(S1c \), the simulation \(S1a \) has been repeated, with a changed order of emission and deposition processes in the operator splitting approach. In this special case the dry deposition processes were calculated before the tracer emissions.

Table 7 lists the correlation analysis between sensitivity simulation results and measurements. The same results are depicted in Fig. 25. With the exception of methanol, the model is performing better than in \(S1 \), although the improvement is, in general, not substantial.

8.1 Sensitivity studies \(S1a \) and \(S1b \)

The dry deposition of CO, as implemented in \(S1a \), results in a total deposition of 74 Tg/yr, which is within the highly uncertain range of previous estimates: Moxley and Cape (1997) (540±430 Tg/yr), Sanhueza et al. (1998) (115–230 Tg/yr), Horowitz et al. (2003) (2 Tg/yr), Folberth et al. (2006) (135 Tg/yr), and Bergamaschi et al. (2000) (301 Tg/yr). The discrepancies between these values cannot be resolved; however, the sensitivity of the model to this process is very low. In Fig. 26, the relative changes between the sensitivity
Fig. 26. Relative difference of the annual average CO mixing ratio at the surface (in %) between sensitivity simulation $S1a$ (including dry deposition of CO) and reference simulation $S1$ (without dry deposition of CO).

Fig. 27. Comparison of CO mixing ratios (in nmol/mol): observations are in red, model results are in black (reference simulation $S1$) and blue (sensitivity simulation $S1a$). For the locations Florida (KEY) and Palmer station, Antarctica (PSA), the model results are sampled one grid-box upwind (see Sect.4).

The changed reaction rate for C_3H_6 slightly improves the correlation of this simulated trace gas (see Table 7, $R^2=0.427$) with aircraft observations. However, the model still simulates a strong depletion in the free troposphere (see Fig. 30), and there is virtually no difference between simulation $S1$ and simulation $S1a$ near the surface. This is due to the low differences between the two different reaction rates (Atkinson et al., 1999, 2005) at high temperature (i.e. near the surface). The wrong vertical profile implies that the chemical processes related to this tracer are not completely understood; more studies on this tracer (especially on its reaction with OH) are required.

The decrease of the oceanic emissions of C_2H_4 marginally improves the correlation at a few locations (see Fig. 31) over the ocean and in the marine boundary layer, but overall the resulting differences between $S1$ and $S1a$ are not significant.
Fig. 29. Vertical profiles of CO (in nmol/mol) for some selected campaigns from Emmons et al. (2000). Asterisks and boxes represent the average and the standard deviation (w.r.t. space and time) of the measurements in the region, respectively. Red is the reference simulation S1, light blue the simulation S1a, and dark blue the simulation S1b. The corresponding standard deviations w.r.t. time and space are indicated by the dashed lines.

(R^2 = 0.413 for S1a). We conclude that the major problem is the high uncertainty of the terrestrial C_2H_4 sources.

For methanol, Table 7 shows a decrease in the correlation between model results and observations for S1a compared to S1. This is due to an increased scatter of the model results for S1a compared to S1 (Fig. 32). Nevertheless, the overall bias is lower in S1a (≈239 pmol/mol) than in S1. The dry deposition of methanol increased from 24.20 Tg/yr in the reference simulation S1 to 82.76 Tg/yr in the sensitivity simulation S1a. In comparison, Jacob et al. (2005) calculated 55 Tg/yr dry deposition of methanol and Heikes et al. (2002) and Tie et al. (2003) suggested the ranges 35–210 Tg/yr and 32–85 Tg/yr, respectively. In conclusion, we recommend to apply the increased amount of biogenic methanol emissions (i.e., 151 Tg/yr) of the S1a simulation for future studies.

Additionally, the modifications of the model setup for acetone, i.e., the altered photolysis rate calculation, between S1 and S1a improved the model results w.r.t. the observations. Figure 33, for example, clearly shows for the TRACE-P campaign (Japan) that the results of the S1a simulation are closer to the observations than those of the S1 simulation. This is quantitatively confirmed by the correlation analysis between the different model results and the observations: for
the sensitivity simulation \(S1a \) the correlation coefficient increased (from \(R^2 = 0.385 \) to \(R^2 = 0.429 \)) and the overall bias decreased (from \(-376.85 \) to \(-211.95 \) pmol/mol) based on the reference simulation. However, compared with station data, the \(S1a \) simulation shows a decrease in the correlation and an increased bias (see Table 8). This implies that the value of \(\approx 56 \) Tg/yr suggested by Folberth et al. (2006) for the biogenic emissions is too high. Discrepancies between the model results and the observations remain, especially over the oceans and in the upper troposphere (Fig. 33). This is probably related to an oversimplified representation of the deposition/emission of acetone from oceans, an issue under debate (Singh et al., 2001; Jacob et al., 2002; Singh et al., 2003; Marandino et al., 2005).

8.2 Sensitivity study \(S1c \)

Because we found a remarkably low sensitivity of CO mixing ratios to the emissions from China (see Sect. 8.1), we want to rule out potential systematic errors connected to the operator splitting as applied in our model. In the standard E5/M1 set up, emission tendencies are calculated before the dry deposition tendencies of trace gases. Therefore, we performed an additional sensitivity simulation \(S1c \) in which we changed the order of processes, such that the dry deposition tendency is calculated before emission tendencies and chemical tendencies. The model setup is the same as for \(S1a \).

As shown in Table 9, the change in the annually averaged dry deposited tracer mass is 5% at maximum. From this we conclude that the systematic error due to the applied operator splitting is small (as for instance compared to uncertainties in emission estimates) and that the low sensitivity mentioned above is a robust result.

9 Conclusions

We presented the second part of the evaluation of the new atmospheric chemistry general circulation model ECHAM5/MESSy1 focusing on organic compounds, including CO, \(C_2H_4 \), \(C_2H_6 \), \(C_3H_6 \), \(C_3H_8 \), \(CH_3CHO \), \(CH_3OH \), HCHO, \(CH_3COCH_3 \), PAN and \(H_2O_2 \). We compared the model results with observational data obtained from aircraft campaigns and from various sampling stations. We applied regression analyses between the model results and the observations and summarised the results in Taylor diagrams for a quantitative statistical evaluation.
The seasonal cycle of carbon monoxide is well reproduced by the model, with a very high correlation with observations in remote regions. Some disagreements between the CO simulation and the NOAA/CMDL surface measurements in polluted areas (which are flagged for “clean air” conditions) can be resolved by sampling the simulated data one grid-box upward. In this case the correlation between the two datasets increases drastically and the positive bias of the simulation almost disappears.

Our results support the finding of Horowitz et al. (2003) that dry deposition of CO has been overestimated in many modelling studies so far because the agreement of CO simulations with observations is best if the dry deposition of CO is neglected. However, despite the low sensitivity of local CO to dry deposition, this process might still represent a significant contribution to the global CO budget, as is reflected by the relative high uncertainties presented in the literature.

Although the seasonal cycle of CO is well reproduced, the model results in the Northern Hemisphere tend to be lower than the observations. This is presumably due to underestimated CO emissions from fossil fuel combustion in winter.

Overall, the model reproduces most of the observations of alkanes. The simulation of alkenes (C\textsubscript{2}H\textsubscript{4} and C\textsubscript{3}H\textsubscript{6}), however, shows large discrepancies compared to observations, which could not be resolved by the conducted sensitivity studies applying reasonable changes in the model setup. The results strongly indicate that the terrestrial emissions of C\textsubscript{2}H\textsubscript{4} are significant (though largely unknown) and that the photochemistry of C\textsubscript{3}H\textsubscript{6} is not yet fully understood.

The quality of the model results for the oxygenated organic compounds is highly dependent on the specific species. While formaldehyde (HCHO) is very well reproduced, the correlations to observations of methanol (CH\textsubscript{3}OH), acetaldehyde (CH\textsubscript{2}CHO) and acetone (CH\textsubscript{3}COCH\textsubscript{3}) are rather low. The few measurements available for acetaldehyde suggest that the model emissions should be increased by a factor of \approx 5, as noticed also by von Kuhlmann et al. (2003b). An increase of the methanol biogenic emissions to \approx 151 Tg/yr decreases the discrepancies between model results and observations, however, the results are still not satisfactory.

An update of the photolysis rate calculation for acetone according to more recent estimates (Blitz et al., 2004) results in a higher correlation of model results with measurements, and partly solves the problem in the upper troposphere. However, the model calculated mixing ratios remain lower than the observations, especially over the Pacific Ocean. This supports the hypothesis of a missing oceanic source.

Acknowledgements. The authors wish to acknowledge the International Max Planck Research School on Atmospheric Chemistry and Physics for financial support. Special thanks to E. Orlandi for the discussions and the MESSy team for the helpful comments. The authors wish also to acknowledge the use of the Ferret program for analysis and graphics in this paper. Ferret is a product of NOAA’s Pacific Marine Environmental Laboratory (information is available at http://www.ferret.noaa.gov).

References
Folberth, G., Hauglustaine, D., Lathiere, J., and Brocheton, F.: Interactive chemistry in the Laboratoire de Meteorologie Dy-

A. Pozzer et al.: Organic species simulated with ECHAM5/MESSy1 2549

www.atmos-chem-phys.net/7/2527/2007/