Kinetic data for MISTRA

supplemental material to:

S. Pechtl, E. R. Lovejoy, J. B. Burkholder, and R. von Glasow
Modeling the possible role of iodine oxides in atmospheric new particle formation
Atmos. Chem. Phys. Discuss., 2005

January 3, 2006
1 Tables of reaction rates

This collection comprises a complete listing of all gas and aqueous phase species (Table 1), gas phase (Table 2) and aqueous phase (Table 3) reaction rates, as well as rates for the heterogeneous (particle surface) reactions (Table 4), aqueous phase equilibrium constants (Table 5), Henry constants and accommodations coefficients (Table 6).

<table>
<thead>
<tr>
<th>Table 1: Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas phase</td>
</tr>
<tr>
<td>O1D, O\textsubscript{2}, O\textsubscript{3}, OH, HO\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}, H\textsubscript{2}O</td>
</tr>
<tr>
<td>NO, NO\textsubscript{2}, NO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5}, HONO, HNO\textsubscript{3}, HNO\textsubscript{4}, PAN, NH\textsubscript{3}</td>
</tr>
<tr>
<td>CO, CO\textsubscript{2}, CH\textsubscript{4}, C\textsubscript{2}H\textsubscript{6}, C\textsubscript{2}H\textsubscript{4}, HCHO, HCOOH, HCO, HCHO, HCOOH, ALD (i.e., CH\textsubscript{3}CHO), CH\textsubscript{2}O\textsubscript{2}, HCHO, H\textsubscript{2}O\textsubscript{2}, CH\textsubscript{3}CO\textsubscript{3}, CH\textsubscript{2}O\textsubscript{2}, C\textsubscript{2}H\textsubscript{5}O\textsubscript{2}, CH\textsubscript{3}O\textsubscript{2}, EO (i.e., CH\textsubscript{3}CHO), CH\textsubscript{2}O\textsubscript{2}, ROOH (i.e., alkylhydroperoxides)</td>
</tr>
<tr>
<td>SO\textsubscript{2}, SO\textsubscript{3}, HOSO\textsubscript{2}, H\textsubscript{2}SO\textsubscript{4}, DMS, CH\textsubscript{3}SCH\textsubscript{2}OO, DMSO, DMSO\textsubscript{2}, CH\textsubscript{3}S, CH\textsubscript{3}SCH\textsubscript{2}O\textsubscript{2}, CH\textsubscript{3}SO\textsubscript{2}H, CH\textsubscript{3}SO\textsubscript{3}H</td>
</tr>
<tr>
<td>Cl, ClO, OCl\textsubscript{O}, HCl, HOCI, Cl\textsubscript{2}, Cl\textsubscript{2}O\textsubscript{2}, Cl\textsubscript{NO\textsubscript{2}}, Cl\textsubscript{NO\textsubscript{3}}</td>
</tr>
<tr>
<td>Br, BrO, HBr, HOB\textsubscript{r}, Br\textsubscript{2}, BrNO\textsubscript{2}, BrNO\textsubscript{3}, BrCl</td>
</tr>
<tr>
<td>I, IO, OIO, HI, HOI, INO\textsubscript{2}, INO\textsubscript{3}, I\textsubscript{2}, ICl, IBr, HI\textsubscript{O}3, CH\textsubscript{3}I, C\textsubscript{2}H\textsubscript{5}I, C\textsubscript{3}H\textsubscript{7}I, CH\textsubscript{2}Cl\textsubscript{2}, CH\textsubscript{2}Br\textsubscript{I}, CH\textsubscript{2}I\textsubscript{2}</td>
</tr>
<tr>
<td>Liquid phase (neutral)</td>
</tr>
<tr>
<td>O\textsubscript{2}, O\textsubscript{3}, OH, HO\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}, H\textsubscript{2}O</td>
</tr>
<tr>
<td>NO, NO\textsubscript{2}, NO\textsubscript{3}, HONO, HNO\textsubscript{3}, HNO\textsubscript{4}, NH\textsubscript{3}</td>
</tr>
<tr>
<td>CO\textsubscript{2}, HCHO, HCOOH, CH\textsubscript{3}OH, CH\textsubscript{3}OO, CH\textsubscript{3}OOH,DOM</td>
</tr>
<tr>
<td>SO\textsubscript{2}, H\textsubscript{2}SO\textsubscript{4}, DMSO, DMSO\textsubscript{2}, CH\textsubscript{3}SO\textsubscript{2}H, CH\textsubscript{3}SO\textsubscript{3}H</td>
</tr>
<tr>
<td>Cl, HCl, HOCI, Cl\textsubscript{2}</td>
</tr>
<tr>
<td>Br, HBr, HOB\textsubscript{r}, Br\textsubscript{2}, BrCl</td>
</tr>
<tr>
<td>IO, HI, HOI, I\textsubscript{2}, ICl, IBr</td>
</tr>
<tr>
<td>Liquid phase (ions)</td>
</tr>
<tr>
<td>H+, OH−, O2</td>
</tr>
<tr>
<td>NO\textsubscript{2}, NO\textsubscript{3}, NO\textsubscript{4}, NH+</td>
</tr>
<tr>
<td>HCO−, CO−, HCOO−</td>
</tr>
<tr>
<td>HSO−, SO2−, HSO\textsubscript{4}−, SO\textsubscript{4}−, SO\textsubscript{3}−, SO\textsubscript{5}−, CH\textsubscript{3}SO\textsubscript{3}−, CH\textsubscript{2}OHSO\textsubscript{2}−, CH\textsubscript{2}OHSO\textsubscript{3}−</td>
</tr>
<tr>
<td>Cl−, Cl\textsubscript{2}, ClO−, ClOH−</td>
</tr>
<tr>
<td>Br−, Br\textsubscript{2}, BrO−, BrCl\textsubscript{2}, Br\textsubscript{3}Cl−, BrOH−</td>
</tr>
<tr>
<td>I−, IO\textsubscript{2}, IO\textsubscript{3}, ICl\textsubscript{2}, IBr\textsubscript{2}, ICl\textsubscript{Br}−</td>
</tr>
</tbody>
</table>
Table 2: Gas phase reactions.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>(n)</th>
<th>(A) [(cm(^{-3})](^{1-n_s^{-1}})]</th>
<th>(-E_a) / (R) [K]</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 1</td>
<td>O(^{1}D) + O(_2) (\rightarrow) O(_3)</td>
<td>2</td>
<td>(3.2 \times 10^{-11})</td>
<td>70</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 2</td>
<td>O(^{1}D) + N(_2) (\rightarrow) O(_3)</td>
<td>2</td>
<td>(1.8 \times 10^{-11})</td>
<td>110</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 3</td>
<td>O(^{1}D) + H(_2)O (\rightarrow) 2 OH</td>
<td>2</td>
<td>(2.2 \times 10^{-10})</td>
<td>110</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 4</td>
<td>OH + O(_3) (\rightarrow) HO(_2) + O(_2)</td>
<td>2</td>
<td>(1.7 \times 10^{-12})</td>
<td>-940</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 5</td>
<td>OH + HO(_2) (\rightarrow) H(_2)O + O(_2)</td>
<td>2</td>
<td>(4.8 \times 10^{-11})</td>
<td>250</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 6</td>
<td>OH + H(_2)O(_2) (\rightarrow) HO(_2) + H(_2)O</td>
<td>2</td>
<td>(2.9 \times 10^{-12})</td>
<td>-160</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 7</td>
<td>HO(_2) + O(_3) (\rightarrow) OH + 2O(_2)</td>
<td>2</td>
<td>(1.0 \times 10^{-14})</td>
<td>-490</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 8</td>
<td>HO(_2) + HO(_2) (\rightarrow) H(_2)O(_2) + O(_2)</td>
<td>2</td>
<td>(2.3 \times 10^{-13})</td>
<td>600</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>O 9</td>
<td>O(_3) + h\nu (\rightarrow) O(_2) + O(^{1}D)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>O 10</td>
<td>H(_2)O(_2) + h\nu (\rightarrow) 2OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 1</td>
<td>NO + OH (\rightarrow) HONO</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 2</td>
<td>NO + HO(_2) (\rightarrow) NO(_2) + OH</td>
<td>2</td>
<td>(3.5 \times 10^{-12})</td>
<td>250</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>N 3</td>
<td>NO + O(_3) (\rightarrow) NO(_2) + O(_2)</td>
<td>2</td>
<td>(3.0 \times 10^{-12})</td>
<td>-1500</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 4</td>
<td>NO + NO(_3) (\rightarrow) 2NO(_2)</td>
<td>2</td>
<td>(1.5 \times 10^{-11})</td>
<td>-1500</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 5</td>
<td>NO(_2) + OH (\rightarrow) HNO(_3)</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 6</td>
<td>NO(_2) + HO(_2) (\rightarrow) HNO(_4)</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 7</td>
<td>NO(_2) + O(_3) (\rightarrow) NO(_3) + O(_2)</td>
<td>2</td>
<td>(1.2 \times 10^{-13})</td>
<td>-2450</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 8</td>
<td>NO(_2) + h\nu (\rightarrow) NO + O(_3)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 9</td>
<td>NO(_2) + NO(_3) (\rightarrow) N(_2)O(_5)</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 10</td>
<td>NO(_2) + h\nu (\rightarrow) NO + O(_2)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Wayne et al. (1991)</td>
</tr>
<tr>
<td>N 11</td>
<td>NO(_3) + HO(_2) (\rightarrow) 0.3 HNO(_3) + 0.7 OH + 0.7 NO(_2) + O(_2)</td>
<td>2</td>
<td>(4.0 \times 10^{-12})</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>N 12</td>
<td>NO(_3) + NO(_3) (\rightarrow) NO(_2) + NO(_2) + O(_2)</td>
<td>2</td>
<td>(8.5 \times 10^{-13})</td>
<td>-2450</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 13</td>
<td>NO(_3) + h\nu (\rightarrow) NO(_2) + O(_3)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Wayne et al. (1991)</td>
</tr>
<tr>
<td>N 14</td>
<td>N(_2)O(_5) (\rightarrow) NO(_2) + NO(_3)</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 15</td>
<td>N(_2)O(_5) + H(_2)O (\rightarrow) 2HNO(_3)</td>
<td>2</td>
<td>(2.6 \times 10^{-22})</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>N 16</td>
<td>N(_2)O(_5) + h\nu (\rightarrow) NO(_2) + NO(_3)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 17</td>
<td>HONO + OH (\rightarrow) NO(_2)</td>
<td>2</td>
<td>(1.8 \times 10^{-11})</td>
<td>-390</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 18</td>
<td>HONO + h\nu (\rightarrow) NO + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 19</td>
<td>HNO(_3) + h\nu (\rightarrow) NO(_2) + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 20</td>
<td>HNO(_3) + OH (\rightarrow) NO(_3) + H(_2)O</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>N 21</td>
<td>HNO(_4) (\rightarrow) NO(_2) + HO(_2)</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>N 22</td>
<td>HNO(_4) + OH (\rightarrow) NO(_2) + H(_2)O + O(_2)</td>
<td>2</td>
<td>(1.3 \times 10^{-12})</td>
<td>380</td>
<td>Haggerstone et al. (2005)</td>
</tr>
<tr>
<td>N 23</td>
<td>HNO(_4) + h\nu (\rightarrow) NO(_2) + HO(_2)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>N 24</td>
<td>HNO(_4) + h\nu (\rightarrow) OH + NO(_3)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>no</td>
<td>reaction</td>
<td>n</td>
<td>$A \ [\text{cm}^{-3}1^{-n_S-1}]$</td>
<td>$-E_a / R \ [\text{K}]$</td>
<td>reference</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>----</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C 1</td>
<td>CO + OH $\overset{O_2}{\rightarrow}$ HO$_2$ + CO$_2$</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 2</td>
<td>CH$_4$ + OH $\overset{O_2}{\rightarrow}$ CH$_3$OO + H$_2$O</td>
<td>2</td>
<td>2.4×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 3</td>
<td>C$_2$H$_6$ + OH \rightarrow C$_2$H$_5$O$_2$ + H$_2$O</td>
<td>2</td>
<td>1.7×10$^{-11}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 4</td>
<td>C$_2$H$_4$ + OH \rightarrow EO$_2$</td>
<td>2</td>
<td>1.66×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 5</td>
<td>C$_2$H$_4$ + O$_3$ \rightarrow HCHO + 0.4CH$_2$O$_2$ + 0.12HO$_2$ + 0.42CO + 0.06CH$_4$</td>
<td>2</td>
<td>1.2×10$^{-14}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 6</td>
<td>HO$_2$ + CH$_3$OO \rightarrow ROOH + O$_2$</td>
<td>2</td>
<td>4.1×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 7</td>
<td>HO$_2$ + C$_2$H$_5$O$_2$ \rightarrow ROOH + O$_2$</td>
<td>2</td>
<td>7.5×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 8</td>
<td>HO$_2$ + CH$_3$CO$_2$ \rightarrow ROOH + O$_2$</td>
<td>2</td>
<td>4.5×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 9</td>
<td>CH$_3$OO + CH$_3$OO \rightarrow 1.4HCHO + 0.8HO$_2$ + O$_2$</td>
<td>2</td>
<td>1.5×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 10</td>
<td>C$_2$H$_5$O$_2$ + NO \rightarrow ALD + HO$_2$ + NO$_2$</td>
<td>2</td>
<td>4.2×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 11</td>
<td>2C$_2$H$_5$O$_2$ \rightarrow 1.6ALD + 1.2HO$_2$</td>
<td>2</td>
<td>5.0×10$^{-14}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 12</td>
<td>EO$_2$ + NO \rightarrow NO$_2$ + 2.0HCHO + HO$_2$</td>
<td>2</td>
<td>4.2×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 13</td>
<td>EO$_2$ + EO$_2$ \rightarrow 2.4HCHO + 1.2HO$_2$ + 0.4ALD</td>
<td>2</td>
<td>5.0×10$^{-14}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 14</td>
<td>HO$_2$ + EO$_2$ \rightarrow ROOH + O$_2$</td>
<td>2</td>
<td>3.0×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 15</td>
<td>HCHO + $h\nu$ \rightarrow 2HO$_2$ + CO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 16</td>
<td>HCHO + $h\nu$ \rightarrow CO + H$_2$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 17</td>
<td>HCHO + OH $\overset{O_2}{\rightarrow}$ HO$_2$ + CO + H$_2$O</td>
<td>2</td>
<td>1.00×10$^{-11}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 18</td>
<td>HCHO + HO$_2$ \rightarrow HOCH$_2$O$_2$</td>
<td>2</td>
<td>6.7×10$^{-15}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 19</td>
<td>HCHO + NO$_3$ $\overset{O_2}{\rightarrow}$ HNO$_4$ + HO$_2$ + CO</td>
<td>2</td>
<td>5.8×10$^{-16}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 20</td>
<td>ALD + OH \rightarrow CH$_3$CO$_2$ + H$_2$O</td>
<td>2</td>
<td>6.9×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 21</td>
<td>ALD + NO$_3$ \rightarrow HNO$_3$ + CH$_3$CO$_2$</td>
<td>2</td>
<td>1.40×10$^{-15}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 22</td>
<td>ALD + $h\nu$ \rightarrow CH$_3$OO + HO$_2$ + CO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 23</td>
<td>ALD + $h\nu$ \rightarrow CH$_4$ + CO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 24</td>
<td>HOCH$_2$O$_2$ + NO \rightarrow HCOOH + HO$_2$ + NO$_2$</td>
<td>2</td>
<td>4.2×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 25</td>
<td>HOCH$_2$O$_2$ + HO$_2$ \rightarrow HCOOH + H$_2$O + O$_2$</td>
<td>2</td>
<td>2.00×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 26</td>
<td>2 HOCH$_2$O$_2$ \rightarrow 2HCOOH + 2HO$_2$ + 2O$_2$</td>
<td>2</td>
<td>1.00×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 27</td>
<td>HCOOH + OH $\overset{O_2}{\rightarrow}$ HO$_2$ + H$_2$O + CO$_2$</td>
<td>2</td>
<td>4.0×10$^{-13}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 28</td>
<td>CH$_3$CO$_3$ + NO$_2$ \rightarrow PAN</td>
<td>2</td>
<td>4.70×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 29</td>
<td>PAN \rightarrow CH$_3$CO$_3$ + NO$_2$</td>
<td>1</td>
<td>1.9×1016</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 30</td>
<td>CH$_3$CO$_3$ + NO \rightarrow CH$_3$OO + NO$_2$ + CO$_2$</td>
<td>2</td>
<td>4.2×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 31</td>
<td>CH$_3$OO + NO $\overset{O_2}{\rightarrow}$ HCHO + NO$_2$ + HO$_2$</td>
<td>2</td>
<td>3.0×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 32</td>
<td>ROOH + OH \rightarrow 0.7 CH$_3$OO + 0.3 HCHO + 0.3 OH</td>
<td>2</td>
<td>3.8×10$^{-12}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C 33</td>
<td>ROOH + $h\nu$ \rightarrow HCHO + OH + HO$_2$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Continued.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>(n)</th>
<th>(A [(cm^{-3})^{1-n_s^{-1}}])</th>
<th>(-E_a / R[K])</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 1</td>
<td>(\text{SO}_2 + \text{OH} \xrightarrow{M} \text{HOSO}_2)</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 2</td>
<td>(\text{HOSO}_2 + \text{O}_2 \rightarrow \text{HO}_2 + \text{SO}_3)</td>
<td>2</td>
<td>(1.3 \times 10^{-12})</td>
<td>330</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 3</td>
<td>(\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4)</td>
<td>1</td>
<td>2</td>
<td></td>
<td>Jayne et al. (1997)</td>
</tr>
<tr>
<td>S 4</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{OH} \rightarrow \text{CH}_3\text{SCH}_2\text{OO} + \text{H}_2\text{O})</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (1997)</td>
</tr>
<tr>
<td>S 5</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{OH} \rightarrow \text{CH}_3\text{SOCH}_3 + \text{HO}_2)</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (1997)</td>
</tr>
<tr>
<td>S 6</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{NO}_3 \rightarrow \text{CH}_3\text{SCH}_2\text{OO} + \text{HNO}_4)</td>
<td>2</td>
<td>(1.9 \times 10^{-13})</td>
<td>520</td>
<td>Atkinson et al. (1999)</td>
</tr>
<tr>
<td>S 7</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{Cl} \rightarrow \text{CH}_3\text{SCH}_2\text{OO} + \text{HCl})</td>
<td>2</td>
<td>(3.3 \times 10^{-10})</td>
<td></td>
<td>Atkinson et al. (1999)</td>
</tr>
<tr>
<td>S 8</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{Br} \rightarrow \text{CH}_3\text{SCH}_2\text{OO} + \text{HBr})</td>
<td>2</td>
<td>(9.0 \times 10^{-11})</td>
<td>-2386</td>
<td>Jefferson et al. (1994)</td>
</tr>
<tr>
<td>S 9</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{BrO} \rightarrow \text{CH}_3\text{SOCH}_3 + \text{Br})</td>
<td>2</td>
<td>(2.54 \times 10^{-14})</td>
<td>850</td>
<td>Ingham et al. (1999)</td>
</tr>
<tr>
<td>S 10</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{ClO} \rightarrow \text{CH}_3\text{SOCH}_3 + \text{Cl})</td>
<td>2</td>
<td>(9.5 \times 10^{-15})</td>
<td></td>
<td>Barnes et al. (1991)</td>
</tr>
<tr>
<td>S 11</td>
<td>(\text{CH}_3\text{SCH}_3 + \text{IO} \rightarrow \text{CH}_3\text{SOCH}_3 + \text{I})</td>
<td>2</td>
<td>(1.4 \times 10^{-14})</td>
<td></td>
<td>THALOZ (2005)</td>
</tr>
<tr>
<td>S 12</td>
<td>(\text{CH}_3\text{SCH}_2\text{OO} + \text{NO} \rightarrow \text{HCHO} + \text{CH}_3\text{S} + \text{NO}_2)</td>
<td>2</td>
<td>(4.9 \times 10^{-12})</td>
<td>263</td>
<td>Urbanski et al. (1997)</td>
</tr>
<tr>
<td>S 13</td>
<td>(\text{CH}_3\text{SCH}_2\text{OO} + \text{CH}_3\text{SCH}_2\text{OO} \rightarrow \text{2 HCHO} + \text{2 CH}_3\text{S})</td>
<td>2</td>
<td>(1.0 \times 10^{-11})</td>
<td></td>
<td>Urbanski et al. (1997); Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 14</td>
<td>(\text{CH}_3\text{S} + \text{O}_2 \rightarrow \text{CH}_3\text{SO} + \text{O}_2)</td>
<td>2</td>
<td>(1.15 \times 10^{-12})</td>
<td>432</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 15</td>
<td>(\text{CH}_3\text{S} + \text{NO}_2 \rightarrow \text{CH}_3\text{SO} + \text{NO})</td>
<td>2</td>
<td>(3.0 \times 10^{-11})</td>
<td>210</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 16</td>
<td>(\text{CH}_3\text{SO} + \text{NO}_2 \rightarrow \text{0.82 CH}_3\text{SO}_2 + \text{0.18 SO}_2 + \text{0.18 H}_2\text{CO}_2 + \text{NO})</td>
<td>2</td>
<td>(1.2 \times 10^{-11})</td>
<td></td>
<td>Atkinson et al. (2004); Kukui et al. (2000), product ratios from van Dingenen et al. (1994)</td>
</tr>
<tr>
<td>S 17</td>
<td>(\text{CH}_3\text{SO} + \text{O}_3 \rightarrow \text{CH}_3\text{SO}_2)</td>
<td>2</td>
<td>(6.0 \times 10^{-13})</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>S 18</td>
<td>(\text{CH}_3\text{SO}_2 \rightarrow \text{SO}_2 + \text{CH}_3\text{OO})</td>
<td>1</td>
<td>(1.9 \times 10^{-13})</td>
<td>-8661</td>
<td>Barone et al. (1995)</td>
</tr>
<tr>
<td>S 19</td>
<td>(\text{CH}_3\text{SO}_2 + \text{NO}_2 \rightarrow \text{CH}_3\text{SO}_3 + \text{NO})</td>
<td>2</td>
<td>(2.2 \times 10^{-12})</td>
<td></td>
<td>Ray et al. (1996)</td>
</tr>
<tr>
<td>S 20</td>
<td>(\text{CH}_3\text{SO}_2 + \text{O}_3 \rightarrow \text{CH}_3\text{SO}_3)</td>
<td>2</td>
<td>(3. \times 10^{-13})</td>
<td></td>
<td>Barone et al. (1995)</td>
</tr>
<tr>
<td>S 21</td>
<td>(\text{CH}_3\text{SO}_3 + \text{HO}_2 \rightarrow \text{CH}_3\text{SO}_4)</td>
<td>2</td>
<td>(5. \times 10^{-11})</td>
<td></td>
<td>Barone et al. (1995)</td>
</tr>
<tr>
<td>S 22</td>
<td>(\text{CH}_3\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{SO}_4 + \text{H}_2\text{SO}_4)</td>
<td>1</td>
<td>(1.36 \times 10^{-14})</td>
<td>-11071</td>
<td>Urbanski et al. (1998)</td>
</tr>
<tr>
<td>S 23</td>
<td>(\text{CH}_3\text{SOCH}_3 + \text{OH} \rightarrow \text{0.95 CH}_3\text{SO}_2\text{H} + \text{0.95 CH}_3\text{OO} + \text{0.05 DMSO}_2)</td>
<td>2</td>
<td>(8.7 \times 10^{-11})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 24</td>
<td>(\text{CH}_3\text{SO}_2\text{H} + \text{OH} \rightarrow \text{0.95 CH}_3\text{SO}_2 + \text{0.05 CH}_3\text{SO}_3\text{H} + \text{0.05 HO}_2 + \text{H}_2\text{O})</td>
<td>2</td>
<td>(9 \times 10^{-11})</td>
<td></td>
<td>Kukui et al. (2003)</td>
</tr>
<tr>
<td>S 25</td>
<td>(\text{CH}_3\text{SO}_2\text{H} + \text{NO}_3 \rightarrow \text{CH}_3\text{SO}_2 + \text{HNO}_3)</td>
<td>2</td>
<td>(1.0 \times 10^{-13})</td>
<td></td>
<td>Yin et al. (1990)</td>
</tr>
</tbody>
</table>
Table 2: Continued.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>n</th>
<th>$A \text{ (cm}^{-3}\text{1-nS}^{-1}\text{)}$</th>
<th>$-E_a / R \text{ [K]}$</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl 1</td>
<td>Cl + O$_3$ \rightarrow ClO + O$_2$</td>
<td>2</td>
<td>2.8×10^{-11}</td>
<td>-250</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 2</td>
<td>Cl + HO$_2$ \rightarrow HCl + O$_2$</td>
<td>2</td>
<td>1.8×10^{-11}</td>
<td>170</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 3</td>
<td>Cl + HO$_2$ \rightarrow ClO + OH</td>
<td>2</td>
<td>4.1×10^{-11}</td>
<td>-450</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 4</td>
<td>Cl + H$_2$O$_2$ \rightarrow HCl + HO$_2$</td>
<td>2</td>
<td>1.1×10^{-11}</td>
<td>-980</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 5</td>
<td>Cl + CH$_3$OO \rightarrow 0.5 ClO + 0.5 HCHO + 0.5 HO$_2$ + 0.5 HCl + 0.5 CO + 0.5 H$_2$O</td>
<td>2</td>
<td>1.6×10^{-10}</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 6</td>
<td>Cl + CH$_4$ \rightarrow HCl + CH$_3$OO</td>
<td>2</td>
<td>9.6×10^{-12}</td>
<td>-1360</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 7</td>
<td>Cl + C$_2$H$_6$ \rightarrow HCl + C$_2$H$_5$O$_2$</td>
<td>2</td>
<td>7.7×10^{-11}</td>
<td>-90</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 8</td>
<td>Cl + C$_2$H$_4$ \rightarrow HCl + C$_2$H$_5$O$_2$</td>
<td>2</td>
<td>1.0×10^{-10}</td>
<td></td>
<td>see note</td>
</tr>
<tr>
<td>Cl 9</td>
<td>Cl + HCHO \rightarrow HCl + HO$_2$ + CO</td>
<td>2</td>
<td>8.1×10^{-11}</td>
<td>-30</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 10</td>
<td>Cl + ROOH \rightarrow CH$_3$OO + HCl</td>
<td>2</td>
<td>5.7×10^{-11}</td>
<td></td>
<td>Wallington et al. (1990), see note</td>
</tr>
<tr>
<td>Cl 11</td>
<td>Cl + OClO \rightarrow ClO + ClO</td>
<td>2</td>
<td>3.2×10^{-11}</td>
<td>170</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 12</td>
<td>Cl + ClNO$_3$ \rightarrow Cl$_2$ + NO$_3$</td>
<td>2</td>
<td>6.5×10^{-12}</td>
<td>135</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 13</td>
<td>ClO + OH \rightarrow Cl + HO$_2$</td>
<td>2</td>
<td>7.4×10^{-12}</td>
<td>-270</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 14</td>
<td>ClO + OH \rightarrow HCl + O$_2$</td>
<td>2</td>
<td>6.0×10^{-13}</td>
<td>-230</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 15</td>
<td>ClO + HO$_2$ \rightarrow HOCl + O$_2$</td>
<td>2</td>
<td>2.2×10^{-12}</td>
<td>340</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 16</td>
<td>ClO + CH$_3$OO \rightarrow Cl + HCHO + HO$_2$</td>
<td>2</td>
<td>3.3×10^{-12}</td>
<td>-115</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 17</td>
<td>ClO + NO \rightarrow Cl + NO$_2$</td>
<td>2</td>
<td>6.2×10^{-12}</td>
<td>295</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 18</td>
<td>ClO + NO$_2$ \rightarrow ClNO$_4$</td>
<td>3</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 19</td>
<td>ClO + ClO \rightarrow Cl$_2$O$_2$</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 20</td>
<td>ClO + ClO \rightarrow Cl$_2$ + O$_2$</td>
<td>2</td>
<td>1.0×10^{-12}</td>
<td>-1590</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 21</td>
<td>ClO + ClO \rightarrow Cl$_2$O$_2$</td>
<td>2</td>
<td>3.0×10^{-11}</td>
<td>-2450</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 22</td>
<td>ClO + ClO \rightarrow Cl + OCIO</td>
<td>2</td>
<td>3.5×10^{-13}</td>
<td>-1370</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 23</td>
<td>OCIO + OH \rightarrow HOCl + O$_2$</td>
<td>2</td>
<td>4.5×10^{-13}</td>
<td>800</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 24</td>
<td>OCIO + NO \rightarrow ClO + NO$_2$</td>
<td>2</td>
<td>1.1×10^{-13}</td>
<td>350</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 25</td>
<td>Cl$_2$O$_2$ \rightarrow ClO + ClO</td>
<td>1</td>
<td>2</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 26</td>
<td>HOCl + OH \rightarrow ClO + H$_2$O</td>
<td>2</td>
<td>3.0×10^{-12}</td>
<td>-500</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Cl 27</td>
<td>HCl + OH \rightarrow H$_2$O + Cl</td>
<td>2</td>
<td>1.8×10^{-12}</td>
<td>-240</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 28</td>
<td>ClNO$_2$ + OH \rightarrow HOCI + NO$_2$</td>
<td>2</td>
<td>2.4×10^{-12}</td>
<td>-1250</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 29</td>
<td>ClNO$_3$ + OH \rightarrow 0.5 ClO + 0.5 HNO$_3$ + 0.5 HOCl + 0.5 NO$_3$</td>
<td>2</td>
<td>1.2×10^{-12}</td>
<td>-330</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Cl 30</td>
<td>ClNO$_3$ \rightarrow ClO + NO$_2$</td>
<td>1</td>
<td>2</td>
<td></td>
<td>Anderson and Fahey (1990)</td>
</tr>
<tr>
<td>Cl 31</td>
<td>OCIO + h$_h$ \rightarrow O$_2$ + ClO</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Cl 32</td>
<td>Cl$_2$O$_2$ + h$_h$ \rightarrow Cl + Cl + O$_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Cl 33</td>
<td>Cl$_2$ + h$_h$ \rightarrow 2 Cl</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Cl 34</td>
<td>HOCl + h$_h$ \rightarrow Cl + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Cl 35</td>
<td>ClNO$_2$ + h$_h$ \rightarrow Cl + NO$_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Cl 36</td>
<td>ClNO$_3$ + h$_h$ \rightarrow Cl + NO$_3$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
</tbody>
</table>
Table 2: Continued.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>(n)</th>
<th>(A \left[\text{cm}^{-3}\right]^{1-nS^{-1}})</th>
<th>(-E_a / R \text{K})</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br 1</td>
<td>(\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2)</td>
<td>2</td>
<td>(1.7 \times 10^{-11})</td>
<td>-800</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Br 2</td>
<td>(\text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2)</td>
<td>2</td>
<td>(7.7 \times 10^{-12})</td>
<td>-450</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Br 3</td>
<td>(\text{Br} + \text{C}_2\text{H}_4 \rightarrow \text{HBr} + \text{C}_2\text{H}_5\text{O}_2)</td>
<td>2</td>
<td>(5. \times 10^{-14})</td>
<td>see note</td>
<td></td>
</tr>
<tr>
<td>Br 4</td>
<td>(\text{Br} + \text{HCHO} \rightarrow \text{HBr} + \text{CO} + \text{HO}_2)</td>
<td>2</td>
<td>(1.7 \times 10^{-11})</td>
<td>-800</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 5</td>
<td>(\text{Br} + \text{ROOH} \rightarrow \text{CH}_3\text{OO} + \text{HBr})</td>
<td>2</td>
<td>(2.66 \times 10^{-12})</td>
<td>-1610</td>
<td>Mallard et al. (1993), see note</td>
</tr>
<tr>
<td>Br 6</td>
<td>(\text{Br} + \text{NO}_2 \rightarrow \text{BrNO}_2)</td>
<td>2</td>
<td>(4.9 \times 10^{-11})</td>
<td>see note</td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 7</td>
<td>(\text{Br} + \text{BrNO}_3 \rightarrow \text{Br}_2 + \text{NO}_3)</td>
<td>2</td>
<td>(1.8 \times 10^{-11})</td>
<td>250</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Br 8</td>
<td>(\text{BrO} + \text{OH} \rightarrow \text{Br} + \text{HO}_2)</td>
<td>2</td>
<td>(4.5 \times 10^{-12})</td>
<td>500</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Br 9</td>
<td>(\text{BrO} + \text{HO}_2 \rightarrow \text{HOB} + \text{O}_2)</td>
<td>2</td>
<td>(4.1 \times 10^{-12})</td>
<td>500</td>
<td>Aranda et al. (1997)</td>
</tr>
<tr>
<td>Br 10</td>
<td>(\text{BrO} + \text{CH}_3\text{OO} \rightarrow \text{HOB} + \text{HCHO})</td>
<td>2</td>
<td>(1.6 \times 10^{-12})</td>
<td>1</td>
<td>Aranda et al. (1997)</td>
</tr>
<tr>
<td>Br 11</td>
<td>(\text{BrO} + \text{CH}_3\text{OO} \rightarrow \text{Br} + \text{HCHO} + \text{HO}_2)</td>
<td>2</td>
<td>(1.5 \times 10^{-14})</td>
<td>1</td>
<td>Hansen et al. (1999)</td>
</tr>
<tr>
<td>Br 12</td>
<td>(\text{BrO} + \text{HCHO} + \text{O}_2 \rightarrow \text{HOBr} + \text{CO} + \text{HO}_2)</td>
<td>2</td>
<td>(8.7 \times 10^{-12})</td>
<td>260</td>
<td>Orlando et al. (2004)</td>
</tr>
<tr>
<td>Br 13</td>
<td>(\text{BrO} + \text{NO} \rightarrow \text{Br} + \text{NO}_2)</td>
<td>2</td>
<td>(2.4 \times 10^{-12})</td>
<td>40</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 14</td>
<td>(\text{BrO} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_3)</td>
<td>3</td>
<td>(2.9 \times 10^{-14})</td>
<td>860</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Br 15</td>
<td>(\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2)</td>
<td>2</td>
<td>(5.5 \times 10^{-12})</td>
<td>205</td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 16</td>
<td>(\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2)</td>
<td>2</td>
<td>(1.1 \times 10^{-12})</td>
<td>205</td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 17</td>
<td>(\text{BrO} + \text{CH}_3\text{OO} \rightarrow \text{Br} + \text{H}_2\text{O})</td>
<td>1</td>
<td>(1.1 \times 10^{-12})</td>
<td>205</td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 18</td>
<td>(\text{BrNO}_3 \rightarrow \text{BrO} + \text{NO}_2)</td>
<td>1</td>
<td>(1.1 \times 10^{-12})</td>
<td>205</td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>no</td>
<td>reaction</td>
<td>n</td>
<td>$A \text{[cm}^{-3}\text{s}^{-1}]$</td>
<td>$-E_a / R \text{[K]}$</td>
<td>reference</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>----</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>11</td>
<td>$I + O_3 \rightarrow IO + O_2$</td>
<td>2</td>
<td>1.9×10^{-11}</td>
<td>-830</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>12</td>
<td>$I + HO_2 \rightarrow HI + O_2$</td>
<td>2</td>
<td>1.5×10^{-11}</td>
<td>-1090</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>13</td>
<td>$I + NO_2 \rightarrow INO_2$</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$I + NO_3 \rightarrow IO + NO_2$</td>
<td>2</td>
<td>4.5×10^{-10}</td>
<td></td>
<td>Chambers et al. (1992)</td>
</tr>
<tr>
<td>15</td>
<td>$I + I \rightarrow I_2$</td>
<td>2</td>
<td>2.99×10^{-11}</td>
<td></td>
<td>Hippler et al. (1973)</td>
</tr>
<tr>
<td>16</td>
<td>$IO + HO_2 \rightarrow HOI + O_2$</td>
<td>2</td>
<td>1.4×10^{-11}</td>
<td>540</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>17</td>
<td>$IO + NO \rightarrow I + NO_2$</td>
<td>2</td>
<td>7.15×10^{-12}</td>
<td>300</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>18</td>
<td>$IO + NO_2 \rightarrow INO_3$</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$IO + IO \rightarrow OIO + I$</td>
<td>2</td>
<td>5.4×10^{-11}</td>
<td>180</td>
<td>Atkinson et al. (2004), for product ratios see text</td>
</tr>
<tr>
<td>20</td>
<td>$OIO + OH \rightarrow 0.5 \text{HIO}_3 + 0.5 \text{HOI}$</td>
<td>2</td>
<td>2.0×10^{-10}</td>
<td></td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
<tr>
<td>21</td>
<td>$OIO + NO \rightarrow \text{NO}_3 + IO$</td>
<td>2</td>
<td>5.1×10^{-13}</td>
<td>712</td>
<td>THALOZ (2005)</td>
</tr>
<tr>
<td>22</td>
<td>$HI + OH \rightarrow I + H_2O$</td>
<td>2</td>
<td>1.6×10^{-11}</td>
<td>440</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>23</td>
<td>$HI + NO_3 \rightarrow I + HNO_3$</td>
<td>2</td>
<td>1.3×10^{-12}</td>
<td>-1830</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>24</td>
<td>$INO_2 \rightarrow I + NO_2$</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td>estimated from data in Jenkin et al. (1985)</td>
</tr>
<tr>
<td>25</td>
<td>$INO_3 \rightarrow IO + NO_2$</td>
<td>2</td>
<td>1.1×10^{15}</td>
<td>-12060</td>
<td>Atkinson et al. (2005)</td>
</tr>
<tr>
<td>26</td>
<td>$I_2 + OH \rightarrow I + HOI$</td>
<td>2</td>
<td>2.1×10^{-10}</td>
<td></td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>27</td>
<td>$I_2 + NO_3 \rightarrow I + INO_3$</td>
<td>2</td>
<td>1.5×10^{-12}</td>
<td></td>
<td>Chambers et al. (1992)</td>
</tr>
<tr>
<td>28</td>
<td>$CH_3I + OH \rightarrow HCHO + I$</td>
<td>2</td>
<td>4.3×10^{-12}</td>
<td>-1120</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>29</td>
<td>$C_3H_7I + OH \rightarrow CH_3OO + I$</td>
<td>2</td>
<td>1.2×10^{-12}</td>
<td></td>
<td>J. Crowley, pers. comm.</td>
</tr>
<tr>
<td>30</td>
<td>$IO + h\nu \rightarrow O_2 + I + O_3$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Laszlo et al. (1995)</td>
</tr>
<tr>
<td>31</td>
<td>$OIO + h\nu \rightarrow I + O_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>THALOZ (2005), for sensitivity studies see text</td>
</tr>
<tr>
<td>32</td>
<td>$HOI + h\nu \rightarrow I + OH$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Bauer et al. (1998)</td>
</tr>
<tr>
<td>33</td>
<td>$INO_2 + h\nu \rightarrow I + NO_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Bröské and Zabel (1998) , R. Bröské, pers. comm.</td>
</tr>
<tr>
<td>34</td>
<td>$INO_3 + h\nu \rightarrow I + NO_3$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>same as BrNO_3, but redshifted by 50 um</td>
</tr>
<tr>
<td>35</td>
<td>$I_2 + h\nu \rightarrow 2I$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Wesely (1989)</td>
</tr>
<tr>
<td>36</td>
<td>$CH_3I + h\nu \rightarrow I + CH_3OO$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Roehl et al. (1997)</td>
</tr>
<tr>
<td>37</td>
<td>$C_2H_5I + h\nu \rightarrow I + ROOH$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>$= CH_3I$</td>
</tr>
<tr>
<td>38</td>
<td>$C_3H_7I + h\nu \rightarrow I + ROOH$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Roehl et al. (1997)</td>
</tr>
<tr>
<td>39</td>
<td>$CH_2Cl + h\nu \rightarrow I + Cl + 2HO_2 + CO$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Roehl et al. (1997)</td>
</tr>
<tr>
<td>40</td>
<td>$CH_2BrI + h\nu \rightarrow I + Br + 2HO_2 + CO$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Mösinger et al. (1998)</td>
</tr>
<tr>
<td>41</td>
<td>$CH_2I_2 + h\nu \rightarrow I + IO + HCHO$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Roehl et al. (1997)</td>
</tr>
</tbody>
</table>
Table 2: Continued.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>(n)</th>
<th>(A) ([\text{cm}^{-3}]^{1-nS^{-1}})</th>
<th>(-E_a/R) [K]</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hx 1</td>
<td>(\text{Cl} + \text{CH}_3\text{I} \rightarrow \text{HCl} + \text{HCHO} + \text{I})</td>
<td>2</td>
<td>(2.9 \times 10^{-11})</td>
<td>-1000</td>
<td>Sander et al. (2003), products simplified</td>
</tr>
<tr>
<td>Hx 2</td>
<td>(\text{Cl} + \text{BrCl} \rightarrow \text{Br} + \text{Cl}_2)</td>
<td>2</td>
<td>(1.5 \times 10^{-11})</td>
<td></td>
<td>Mallard et al. (1993)</td>
</tr>
<tr>
<td>Hx 3</td>
<td>(\text{Cl} + \text{Br}_2 \rightarrow \text{BrCl} + \text{Br})</td>
<td>2</td>
<td>(1.2 \times 10^{-10})</td>
<td></td>
<td>Mallard et al. (1993)</td>
</tr>
<tr>
<td>Hx 4</td>
<td>(\text{I}_2 + \text{Cl} \rightarrow \text{I} + \text{ICl})</td>
<td>2</td>
<td>(2.09 \times 10^{-10})</td>
<td></td>
<td>Bedjanian et al. (1996)</td>
</tr>
<tr>
<td>Hx 5</td>
<td>(\text{Br} + \text{OClO} \rightarrow \text{BrO} + \text{ClO})</td>
<td>2</td>
<td>(2.6 \times 10^{-11})</td>
<td>-1300</td>
<td>Mallard et al. (2004)</td>
</tr>
<tr>
<td>Hx 6</td>
<td>(\text{Br} + \text{Cl}_2 \rightarrow \text{BrCl} + \text{Cl})</td>
<td>2</td>
<td>(1.1 \times 10^{-15})</td>
<td></td>
<td>Mallard et al. (1993)</td>
</tr>
<tr>
<td>Hx 7</td>
<td>(\text{Br} + \text{BrCl} \rightarrow \text{Br}_2 + \text{Cl})</td>
<td>2</td>
<td>(3.3 \times 10^{-15})</td>
<td></td>
<td>Mallard et al. (1993)</td>
</tr>
<tr>
<td>Hx 8</td>
<td>(\text{I}_2 + \text{Br} \rightarrow \text{I} + \text{IBr})</td>
<td>2</td>
<td>(1.2 \times 10^{-10})</td>
<td></td>
<td>Bedjanian et al. (1997)</td>
</tr>
<tr>
<td>Hx 9</td>
<td>(\text{I} + \text{BrO} \rightarrow \text{IO} + \text{Br})</td>
<td>2</td>
<td>(1.2 \times 10^{-11})</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Hx 10</td>
<td>(\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{OCIO})</td>
<td>2</td>
<td>(1.6 \times 10^{-12})</td>
<td>430</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Hx 11</td>
<td>(\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{Cl} + \text{O}_2)</td>
<td>2</td>
<td>(2.9 \times 10^{-12})</td>
<td>220</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Hx 12</td>
<td>(\text{BrO} + \text{ClO} \rightarrow \text{BrCl} + \text{O}_2)</td>
<td>2</td>
<td>(5.8 \times 10^{-13})</td>
<td>170</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Hx 13</td>
<td>(\text{IO} + \text{ClO} \rightarrow 0.8 \text{I} + 0.55 \text{OCIO} + 0.45 \text{O}_2 + 0.25 \text{Cl} + 0.2 \text{ICl})</td>
<td>2</td>
<td>(4.7 \times 10^{-12})</td>
<td>280</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Hx 14</td>
<td>(\text{IO} + \text{BrO} \rightarrow \text{Br} + 0.8 \text{OIO} + 0.2 \text{I} + 0.2 \text{O}_2)</td>
<td>2</td>
<td>(1.5 \times 10^{-11})</td>
<td>510</td>
<td>Atkinson et al. (2004)</td>
</tr>
<tr>
<td>Hx 15</td>
<td>(\text{BrCl} + h\nu \rightarrow \text{Br} + \text{Cl})</td>
<td>1</td>
<td>(1)</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Hx 16</td>
<td>(\text{ICl} + h\nu \rightarrow \text{I} + \text{Cl})</td>
<td>1</td>
<td>(1)</td>
<td></td>
<td>Seery and Britton (1964)</td>
</tr>
<tr>
<td>Hx 17</td>
<td>(\text{IBr} + h\nu \rightarrow \text{I} + \text{Br})</td>
<td>1</td>
<td>(1)</td>
<td></td>
<td>Seery and Britton (1964)</td>
</tr>
</tbody>
</table>

\(n\) is the order of the reaction. \(^1\) photolysis rates calculated online, \(^2\) special rate functions (pressure dependent and/or humidity dependent). Notes: The rates for ROOH were assumed as that of \(\text{CH}_3\text{OOH}\); \(\text{C}_2\text{H}_4\) is used as generic alkene as in the Lurmann et al. (1986) mechanism. The rate coefficients are calculated with \(k = A \times \exp(-E_a/kT)\).
Table 3: Aqueous phase reactions.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>n</th>
<th>$k_0 , ([M^{n-}]s^{-1})$</th>
<th>$-E_a / R [K]$</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 1</td>
<td>$O_3 + OH \rightarrow HO_2$</td>
<td>2</td>
<td>1.1×10^8</td>
<td>-</td>
<td>Sehested et al. (1984)</td>
</tr>
<tr>
<td>O 2</td>
<td>$O_3 + O_2 \rightarrow OH + OH^-$</td>
<td>2</td>
<td>1.5×10^9</td>
<td>-</td>
<td>Sehested et al. (1983)</td>
</tr>
<tr>
<td>O 3</td>
<td>$OH + OH \rightarrow H_2O_2$</td>
<td>2</td>
<td>5.5×10^9</td>
<td>-</td>
<td>Buxton et al. (1988)</td>
</tr>
<tr>
<td>O 4</td>
<td>$OH + HO_2 \rightarrow H_2O$</td>
<td>2</td>
<td>7.1×10^9</td>
<td>-</td>
<td>Sehested et al. (1968)</td>
</tr>
<tr>
<td>O 5</td>
<td>$OH + O_2 \rightarrow OH^-$</td>
<td>2</td>
<td>1.0×10^{10}</td>
<td>-</td>
<td>Sehested et al. (1968)</td>
</tr>
<tr>
<td>O 6</td>
<td>$OH + H_2O_2 \rightarrow HO_2$</td>
<td>2</td>
<td>2.7×10^7</td>
<td>-1684</td>
<td>Christensen et al. (1982)</td>
</tr>
<tr>
<td>O 7</td>
<td>$HO_2 + HO_2 \rightarrow H_2O_2$</td>
<td>2</td>
<td>9.7×10^5</td>
<td>-2500</td>
<td>Christensen and Sehested (1988)</td>
</tr>
<tr>
<td>O 8</td>
<td>$HO_2 + O_2 \rightarrow H_2O_2$</td>
<td>2</td>
<td>1.0×10^8</td>
<td>-900</td>
<td>Christensen and Sehested (1988)</td>
</tr>
<tr>
<td>N 1</td>
<td>$HONO + OH \rightarrow NO_2$</td>
<td>2</td>
<td>1.0×10^9</td>
<td>-</td>
<td>assumed =N7 Barker et al. (1970)</td>
</tr>
<tr>
<td>N 2</td>
<td>$HONO + H_2O_2 \rightarrow HNO_3$</td>
<td>3</td>
<td>4.6×10^3</td>
<td>-6800</td>
<td>Damschen and Martin (1983)</td>
</tr>
<tr>
<td>N 3</td>
<td>$NO_3 + OH^- \rightarrow NO_3^- + OH$</td>
<td>2</td>
<td>8.2×10^7</td>
<td>-2700</td>
<td>Exner et al. (1992)</td>
</tr>
<tr>
<td>N 4</td>
<td>$NO_2 + NO_2 \rightarrow HNO_2 + HONO$</td>
<td>2</td>
<td>1.0×10^8</td>
<td>-</td>
<td>Lee and Schwartz (1981)</td>
</tr>
<tr>
<td>N 5</td>
<td>$NO_2 + HO_2 \rightarrow HNO_4$</td>
<td>2</td>
<td>1.8×10^9</td>
<td>-</td>
<td>Warneck (1999)</td>
</tr>
<tr>
<td>N 6</td>
<td>$NO_2^- + O_3 \rightarrow NO_3^- + O_2$</td>
<td>2</td>
<td>5.0×10^5</td>
<td>-6950</td>
<td>Damschen and Martin (1983)</td>
</tr>
<tr>
<td>N 7</td>
<td>$NO_2^- + OH^- \rightarrow NO_2 + OH^-$</td>
<td>2</td>
<td>1.0×10^{10}</td>
<td>-</td>
<td>Barker et al. (1970)</td>
</tr>
<tr>
<td>N 8</td>
<td>$NO_4^- \rightarrow NO_2 + O_2$</td>
<td>1</td>
<td>8.0×10^{-1}</td>
<td>-</td>
<td>Warneck (1999)</td>
</tr>
<tr>
<td>C 1</td>
<td>$HCHO + OH \rightarrow HCOOH + HO_2$</td>
<td>2</td>
<td>7.7×10^8</td>
<td>-1020</td>
<td>Chin and Wine (1994)</td>
</tr>
<tr>
<td>C 2</td>
<td>$HCOOH + OH \rightarrow HO_2 + CO_2$</td>
<td>2</td>
<td>1.1×10^8</td>
<td>-991</td>
<td>Chin and Wine (1994)</td>
</tr>
<tr>
<td>C 3</td>
<td>$HCOO^- + OH^- \rightarrow OH^- + HO_2 + CO_2$</td>
<td>2</td>
<td>3.1×10^9</td>
<td>-1240</td>
<td>Chin and Wine (1994)</td>
</tr>
<tr>
<td>C 4</td>
<td>$CH_3OO + HO_2 \rightarrow CH_2OOH$</td>
<td>2</td>
<td>4.3×10^5</td>
<td>-</td>
<td>estimated by Jacob (1986)</td>
</tr>
<tr>
<td>C 5</td>
<td>$CH_3OO + O_2^- \rightarrow CH_3OOH + OH^-$</td>
<td>2</td>
<td>5.0×10^7</td>
<td>-</td>
<td>estimated by Jacob (1986)</td>
</tr>
<tr>
<td>C 6</td>
<td>$CH_3OO + OH^- \rightarrow HCHO + HO_2$</td>
<td>2</td>
<td>9.7×10^8</td>
<td>-</td>
<td>Buxton et al. (1988)</td>
</tr>
<tr>
<td>C 7</td>
<td>$CH_3OOH + OH^- \rightarrow CH_3OO$</td>
<td>2</td>
<td>2.7×10^7</td>
<td>-1715</td>
<td>estimated by Jacob (1986)</td>
</tr>
<tr>
<td>C 8</td>
<td>$CH_3OOH + OH^- \rightarrow CH_3OO$</td>
<td>2</td>
<td>2.7×10^7</td>
<td>-1715</td>
<td>estimated by Jacob (1986)</td>
</tr>
<tr>
<td>C 9</td>
<td>$CO_3^- + O_2^- \rightarrow HCOO_2^- + OH^-$</td>
<td>2</td>
<td>6.5×10^8</td>
<td>-</td>
<td>Ross et al. (1992)</td>
</tr>
<tr>
<td>C 10</td>
<td>$CO_3^- + H_2O_2 \rightarrow HCOO^- + HO_2$</td>
<td>2</td>
<td>4.3×10^5</td>
<td>-</td>
<td>Ross et al. (1992)</td>
</tr>
<tr>
<td>C 11</td>
<td>$CO_3^- + HCOO^- \rightarrow HCOO_2^- + HCO_3^- + HO_2$</td>
<td>2</td>
<td>1.5×10^5</td>
<td>-</td>
<td>Ross et al. (1992)</td>
</tr>
<tr>
<td>C 12</td>
<td>$HCOO_2^- + OH^- \rightarrow CO_3^-$</td>
<td>2</td>
<td>8.5×10^6</td>
<td>-</td>
<td>Ross et al. (1992)</td>
</tr>
<tr>
<td>C 13</td>
<td>$DOM + OH \rightarrow HO_2$</td>
<td>2</td>
<td>5.0×10^9</td>
<td>-</td>
<td>estimated by (C. Anastasio, pers. comm.) from Ross et al. (1998)</td>
</tr>
<tr>
<td>S 1</td>
<td>$SO_3^- + O_2 \rightarrow SO_4^- + O_3$</td>
<td>2</td>
<td>1.5×10^9</td>
<td>-</td>
<td>Huie and Neta (1977)</td>
</tr>
<tr>
<td>S 2</td>
<td>$HSO_3^- + O_3 \rightarrow SO_2^2^- + H^+ + O_2$</td>
<td>2</td>
<td>3.7×10^5</td>
<td>-5500</td>
<td>Hoffmann (1986)</td>
</tr>
<tr>
<td>S 3</td>
<td>$SO_3^- + O_3 \rightarrow SO_2^2^- + O_2$</td>
<td>2</td>
<td>1.5×10^9</td>
<td>-5300</td>
<td>Hoffmann (1986)</td>
</tr>
<tr>
<td>S 4</td>
<td>$H_2SO_3^- + OH^- \rightarrow SO_3^-$</td>
<td>2</td>
<td>4.5×10^9</td>
<td>-</td>
<td>Buxton et al. (1988)</td>
</tr>
<tr>
<td>S 5</td>
<td>$SO_3^- + OH^- \rightarrow SO_4^- + OH^-$</td>
<td>2</td>
<td>5.5×10^9</td>
<td>-</td>
<td>Buxton et al. (1988)</td>
</tr>
<tr>
<td>S 6</td>
<td>$HSO_3^- + HO_2 \rightarrow SO_4^- + OH + H^+$</td>
<td>2</td>
<td>3.0×10^3</td>
<td>-</td>
<td>upper limit D. Sedlak pers. comm. with R. Sander</td>
</tr>
<tr>
<td>S 7</td>
<td>$HSO_3^- + O_2^- \rightarrow SO_4^- + OH$</td>
<td>2</td>
<td>3.0×10^3</td>
<td>-</td>
<td>upper limit D. Sedlak pers. comm. with R. Sander</td>
</tr>
</tbody>
</table>
Table 3: Continued.

<table>
<thead>
<tr>
<th>No</th>
<th>Reaction</th>
<th>n</th>
<th>$k_0 \text{[M}^{-n}\text{s}^{-1}]$</th>
<th>$-E_a / R \text{[K]}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 8</td>
<td>$\text{HSO}_3^- + \text{H}_2\text{O}_2 \rightarrow \text{SO}_4^{2-} + \text{H}^+$</td>
<td>2</td>
<td>$5.2 \times 10^6 \times \frac{[\text{H}^+]}{[\text{H}^+]+0.1M}$</td>
<td>-3650</td>
<td>Damschen and Martin (1983)</td>
</tr>
<tr>
<td>S 9</td>
<td>$\text{HSO}_3^- + \text{NO}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + \text{HONO} + \text{HONO}$</td>
<td>2</td>
<td>2.0×10^7</td>
<td>Clifton et al. (1988)</td>
<td></td>
</tr>
<tr>
<td>S 10</td>
<td>$\text{SO}_2^- + \text{NO}_2 \rightarrow \text{SO}_3^- + \text{H}_2\text{O} + \text{HONO}$</td>
<td>2</td>
<td>2.0×10^7</td>
<td>Clifton et al. (1988)</td>
<td></td>
</tr>
<tr>
<td>S 11</td>
<td>$\text{HSO}_3^- + \text{NO}_3^- \rightarrow \text{SO}_3^- + \text{NO}_3^- + \text{H}^+$</td>
<td>2</td>
<td>1.4×10^9</td>
<td>Exner et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>S 12</td>
<td>$\text{HSO}_3^- + \text{HNO}_4 \rightarrow \text{HSO}_4^- + \text{NO}_3^- + \text{H}^+$</td>
<td>2</td>
<td>3.1×10^5</td>
<td>Warneck (1999)</td>
<td></td>
</tr>
<tr>
<td>S 13</td>
<td>$\text{HSO}_3^- + \text{CH}_3\text{OOH} \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{CH}_3\text{OH}$</td>
<td>3</td>
<td>1.6×10^7</td>
<td>-3800 Lind et al. (1987)</td>
<td></td>
</tr>
<tr>
<td>S 14</td>
<td>$\text{SO}_2^- + \text{CH}_3\text{OOH} \rightarrow \text{SO}_4^{2-} + \text{CH}_3\text{OH}$</td>
<td>3</td>
<td>1.6×10^7</td>
<td>-3800 Lind et al. (1987)</td>
<td></td>
</tr>
<tr>
<td>S 15</td>
<td>$\text{HSO}_3^- + \text{HCHO} \rightarrow \text{CH}_2\text{OHSO}_3$</td>
<td>2</td>
<td>4.3×10^{-1}</td>
<td>Boyce and Hoffmann (1984)</td>
<td></td>
</tr>
<tr>
<td>S 16</td>
<td>$\text{SO}_2^- + \text{HCHO} \rightarrow \text{OH} + \text{H}_2\text{O}$</td>
<td>2</td>
<td>1.4×10^4</td>
<td>Boyce and Hoffmann (1984)</td>
<td></td>
</tr>
<tr>
<td>S 17</td>
<td>$\text{CH}_2\text{OHSO}_3^- + \text{OH}^- \rightarrow \text{SO}_3^- + \text{HCHO}$</td>
<td>2</td>
<td>3.6×10^3</td>
<td>Seinfeld and Pandis (1998)</td>
<td></td>
</tr>
<tr>
<td>S 18</td>
<td>$\text{HSO}_3^- + \text{HSO}_5^- \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{H}_2\text{O}$</td>
<td>2</td>
<td>7.1×10^6</td>
<td>Boyce and Hoffmann (1984)</td>
<td></td>
</tr>
<tr>
<td>S 19</td>
<td>$\text{SO}_4^- + \text{OH}^- \rightarrow \text{HSO}_5^-$</td>
<td>2</td>
<td>1.0×10^9</td>
<td>Jiang et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>S 20</td>
<td>$\text{SO}_4^- + \text{H} + \text{O}_2 \rightarrow \text{SO}_4^{2-}$</td>
<td>2</td>
<td>3.5×10^9</td>
<td>Jiang et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>S 21</td>
<td>$\text{SO}_4^- + \text{O}_2 \rightarrow \text{SO}_4^{2-}$</td>
<td>2</td>
<td>3.5×10^9</td>
<td>assumed =S20</td>
<td></td>
</tr>
<tr>
<td>S 22</td>
<td>$\text{SO}_4^- + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{OH}$</td>
<td>2</td>
<td>1.1×10^4</td>
<td>Herrmann et al. (1995)</td>
<td></td>
</tr>
<tr>
<td>S 23</td>
<td>$\text{SO}_4^- + \text{H}_2\text{O}_2 \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{HO}_2$</td>
<td>2</td>
<td>1.2×10^7</td>
<td>Wine et al. (1989)</td>
<td></td>
</tr>
<tr>
<td>S 24</td>
<td>$\text{SO}_4^- + \text{NO}_3^- \rightarrow \text{SO}_4^{2-} + \text{NO}_3$</td>
<td>2</td>
<td>5.0×10^4</td>
<td>Exner et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>S 25</td>
<td>$\text{SO}_4^- + \text{HSO}_3^- \rightarrow \text{SO}_3^- + \text{SO}_4^{2-} + \text{H}^+$</td>
<td>2</td>
<td>8.0×10^8</td>
<td>Huie and Neta (1987)</td>
<td></td>
</tr>
<tr>
<td>S 26</td>
<td>$\text{SO}_4^- + \text{SO}_4^{2-} \rightarrow \text{SO}_3^- + \text{SO}_4^{2-}$</td>
<td>2</td>
<td>4.6×10^8</td>
<td>Huie and Neta (1987)</td>
<td></td>
</tr>
<tr>
<td>S 27</td>
<td>$\text{SO}_4^- + \text{NO}_3^- \rightarrow \text{NO}_3^- + \text{SO}_4^{2-}$</td>
<td>2</td>
<td>1.0×10^5</td>
<td>Logager et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>S 28</td>
<td>$\text{SO}_4^- + \text{HSO}_5^- \rightarrow \text{SO}_4^- + \text{SO}_4^{2-} + \text{H}^+$</td>
<td>2</td>
<td>7.5×10^4</td>
<td>Huie and Neta (1987)</td>
<td></td>
</tr>
<tr>
<td>S 29</td>
<td>$\text{SO}_4^- + \text{SO}_4^{2-} \rightarrow \text{SO}_4^- + \text{SO}_4^{2-}$</td>
<td>2</td>
<td>9.4×10^6</td>
<td>Huie and Neta (1987)</td>
<td></td>
</tr>
<tr>
<td>S 30</td>
<td>$\text{SO}_4^- + \text{H}_2\text{O}_2 \rightarrow \text{SO}_4^- + \text{H}_2\text{O} + \text{O}_2$</td>
<td>2</td>
<td>2.5×10^4</td>
<td>Huie and Neta (1987); Deister and Warneck (1990)</td>
<td></td>
</tr>
<tr>
<td>S 31</td>
<td>$\text{SO}_4^- + \text{SO}_4^{2-} \rightarrow \text{SO}_3^- + \text{HSO}_5^-$</td>
<td>2</td>
<td>3.6×10^6</td>
<td>Huie and Neta (1987); Deister and Warneck (1990)</td>
<td></td>
</tr>
<tr>
<td>S 32</td>
<td>$\text{SO}_4^- + \text{O}_2 \rightarrow \text{HSO}_5^- + \text{O}_2$</td>
<td>2</td>
<td>2.3×10^8</td>
<td>Buxton et al. (1996)</td>
<td></td>
</tr>
<tr>
<td>S 33</td>
<td>$\text{SO}_4^- + \text{SO}_5^- \rightarrow \text{H}_2\text{O}$</td>
<td>2</td>
<td>1.0×10^8</td>
<td>Ross et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>S 34</td>
<td>$\text{DMS} + \text{O}_3 \rightarrow \text{O}_2 + \text{DMSO}$</td>
<td>2</td>
<td>8.6×10^8</td>
<td>Gershenzon et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>S 35</td>
<td>$\text{DMS} + \text{OH} \rightarrow 0.5\text{CH}_3\text{SO}_3^- + 0.5\text{CH}_3\text{OO} + 0.5\text{H}_2\text{O} + \text{HCHO} + \text{H}^+$</td>
<td>2</td>
<td>1.9×10^{10}</td>
<td>Ross et al. (1998)</td>
<td></td>
</tr>
<tr>
<td>S 36</td>
<td>$\text{DMSO} + \text{OH} \rightarrow \text{CH}_3\text{SO}_3^- + \text{CH}_3\text{OO} + \text{H}^+$</td>
<td>2</td>
<td>4.5×10^9</td>
<td>Bardouki et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>S 37</td>
<td>$\text{CH}_3\text{SO}_3^- + \text{OH} \rightarrow \text{CH}_3\text{SO}_3^- + \text{H}_2\text{O} - \text{O}_2$</td>
<td>2</td>
<td>1.2×10^7</td>
<td>Bardouki et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>S 38</td>
<td>$\text{CH}_3\text{SO}_3^- + \text{OH} \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{CH}_3\text{OO}$</td>
<td>2</td>
<td>1.2×10^7</td>
<td>Bonsang et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>reaction</td>
<td>n</td>
<td>$k_0\ [M^{1-n} s^{-1}]$</td>
<td>$-E_a / K$</td>
<td>reference</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cl 1</td>
<td>$Cl + H_2O_2 \rightarrow HO_2 + Cl^- + H^+$</td>
<td>2</td>
<td>2.0×10^5</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 2</td>
<td>$Cl + H_2O \rightarrow H^+ + ClOH^-$</td>
<td>2</td>
<td>1.8×10^5</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 3</td>
<td>$Cl + NO_3^- \rightarrow NO_3^- + Cl^-$</td>
<td>2</td>
<td>1.0×10^8</td>
<td>-</td>
<td>Buxton et al. (1999b)</td>
</tr>
<tr>
<td>Cl 4</td>
<td>$Cl + DOM \rightarrow Cl^- + HO_2$</td>
<td>2</td>
<td>5.0×10^9</td>
<td>-</td>
<td>estimated (C. Anastasio, pers. comm.) from Ross et al. (1998)</td>
</tr>
<tr>
<td>Cl 5</td>
<td>$Cl + SO_4^{2-} \rightarrow SO_4^+ + Cl^-$</td>
<td>2</td>
<td>2.1×10^8</td>
<td>-</td>
<td>Buxton et al. (1999a)</td>
</tr>
<tr>
<td>Cl 6</td>
<td>$Cl + Cl \rightarrow Cl_2$</td>
<td>2</td>
<td>8.8×10^7</td>
<td>-</td>
<td>Wu et al. (1980)</td>
</tr>
<tr>
<td>Cl 7</td>
<td>$Cl^- + OH^- \rightarrow ClOH^-$</td>
<td>2</td>
<td>4.2×10^9</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 8</td>
<td>$Cl^- + O_3 \rightarrow ClO^- + O_2$</td>
<td>2</td>
<td>3.0×10^{-3}</td>
<td>-</td>
<td>Hoigne et al. (1985)</td>
</tr>
<tr>
<td>Cl 9</td>
<td>$Cl^- + O_3 \rightarrow NO_3^- + Cl^-$</td>
<td>2</td>
<td>9.3×10^6</td>
<td>-4330</td>
<td>Exner et al. (1992)</td>
</tr>
<tr>
<td>Cl 10</td>
<td>$Cl^- + SO_4^- \rightarrow SO_4^{2-} + Cl^-$</td>
<td>2</td>
<td>2.5×10^8</td>
<td>-</td>
<td>Buxton et al. (1999a)</td>
</tr>
<tr>
<td>Cl 11</td>
<td>$Cl^- + HSO_4^- \rightarrow HCl + SO_4^{2-}$</td>
<td>2</td>
<td>1.8×10^{-3}</td>
<td>-7352</td>
<td>Fortnum et al. (1960)</td>
</tr>
<tr>
<td>Cl 12</td>
<td>$Cl^- + HOCl + H^+ \rightarrow Cl_2$</td>
<td>3</td>
<td>2.2×10^4</td>
<td>-3508</td>
<td>Ayers et al. (1996)</td>
</tr>
<tr>
<td>Cl 13</td>
<td>$Cl_2 \rightarrow Cl^- + HOCl + H^+$</td>
<td>1</td>
<td>2.2×10^4</td>
<td>-8012</td>
<td>Ayers et al. (1996)</td>
</tr>
<tr>
<td>Cl 14</td>
<td>$Cl_2^- + OH^- \rightarrow HOCl + Cl^-$</td>
<td>2</td>
<td>1.0×10^9</td>
<td>-</td>
<td>Ross et al. (1998)</td>
</tr>
<tr>
<td>Cl 15</td>
<td>$Cl_2^- + OH^- \rightarrow Cl^- + Cl^- + OH$</td>
<td>2</td>
<td>4.0×10^6</td>
<td>-</td>
<td>Jacobi (1996)</td>
</tr>
<tr>
<td>Cl 16</td>
<td>$Cl_2^- + HO_2 \rightarrow Cl^- + Cl^- + H^+ + O_2$</td>
<td>2</td>
<td>3.1×10^9</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 17</td>
<td>$Cl_2^- + O_2 \rightarrow Cl^- + Cl^- + O_2$</td>
<td>2</td>
<td>6.0×10^9</td>
<td>-</td>
<td>Jacobi (1996)</td>
</tr>
<tr>
<td>Cl 18</td>
<td>$Cl_2^- + H_2O_2 \rightarrow Cl^- + Cl^- + H^+ + HO_2$</td>
<td>2</td>
<td>7.0×10^5</td>
<td>-3340</td>
<td>Jacobi (1996)</td>
</tr>
<tr>
<td>Cl 19</td>
<td>$Cl_2^- + NO_3^- \rightarrow Cl^- + Cl^- + NO_2$</td>
<td>2</td>
<td>6.0×10^7</td>
<td>-</td>
<td>Jacobi (1996)</td>
</tr>
<tr>
<td>Cl 20</td>
<td>$Cl_2^- + CH_3OOH \rightarrow Cl^- + Cl^- + H^+ + CH_3OO$</td>
<td>2</td>
<td>7.0×10^5</td>
<td>-3340</td>
<td>assumed by Jacobi (1996)</td>
</tr>
<tr>
<td>Cl 21</td>
<td>$Cl_2^- + DOM \rightarrow Cl^- + Cl^- + HO_2$</td>
<td>2</td>
<td>1.0×10^6</td>
<td>-</td>
<td>estimated (C. Anastasio, pers. comm.) from Ross et al. (1998)</td>
</tr>
<tr>
<td>Cl 22</td>
<td>$Cl_2^- + HSO_3^- \rightarrow SO_3^- + Cl^- + Cl^- + H^+$</td>
<td>2</td>
<td>6.0×10^7</td>
<td>-</td>
<td>Shoute et al. (1991)</td>
</tr>
<tr>
<td>Cl 23</td>
<td>$Cl_2^- + SO_3^{2-} \rightarrow SO_3^- + Cl^- + Cl^-$</td>
<td>2</td>
<td>6.0×10^7</td>
<td>-</td>
<td>Jacobi et al. (1996)</td>
</tr>
<tr>
<td>Cl 24</td>
<td>$Cl_2^- + Cl_2 \rightarrow Cl_2 + 2Cl^-$</td>
<td>2</td>
<td>6.2×10^9</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 25</td>
<td>$Cl^- + Cl \rightarrow Cl^- + Cl_2$</td>
<td>2</td>
<td>2.7×10^9</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 26</td>
<td>$Cl^- + DMS \rightarrow 0.5 CH_3SO_3^- + 0.5 CH_3OO + 0.5 HSO_4^- + HCHO + 2 Cl^- + 2 H^+$</td>
<td>2</td>
<td>3.0×10^9</td>
<td>-</td>
<td>rate from Ross et al. (1998)</td>
</tr>
<tr>
<td>Cl 27</td>
<td>$ClO^- + Cl^- + OH$</td>
<td>1</td>
<td>6.0×10^9</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 28</td>
<td>$ClO^- + H^+ \rightarrow Cl^-$</td>
<td>2</td>
<td>4.0×10^{10}</td>
<td>-</td>
<td>Yu (2001)</td>
</tr>
<tr>
<td>Cl 29</td>
<td>$HOCl + HO_2 \rightarrow Cl + O_2$</td>
<td>2</td>
<td>7.5×10^6</td>
<td>-</td>
<td>assumed = Cl30 Long and Bielski (1980)</td>
</tr>
<tr>
<td>Cl 30</td>
<td>$HOCl + O_2^- \rightarrow Cl + OH^- + O_2$</td>
<td>2</td>
<td>7.5×10^6</td>
<td>-</td>
<td>Long and Bielski (1980)</td>
</tr>
<tr>
<td>Cl 31</td>
<td>$HOCl + SO_3^{2-} \rightarrow Cl^- + HSO_3^-$</td>
<td>2</td>
<td>7.6×10^6</td>
<td>-</td>
<td>Fogelman et al. (1989)</td>
</tr>
<tr>
<td>Cl 32</td>
<td>$HOCl + HSO_4^- \rightarrow Cl^- + HSO_4^- + H^+$</td>
<td>2</td>
<td>7.6×10^8</td>
<td>-</td>
<td>assumed = Cl31 Fogelman et al. (1989)</td>
</tr>
<tr>
<td>Cl 33</td>
<td>$Cl_2 + HO_2 \rightarrow Cl_2 + H^+ + O_2$</td>
<td>2</td>
<td>1.0×10^9</td>
<td>-</td>
<td>Bjergbakke et al. (1981)</td>
</tr>
<tr>
<td>Cl 34</td>
<td>$Cl_2 + O_2^- \rightarrow Cl_2 + O_2$</td>
<td>2</td>
<td>1.0×10^9</td>
<td>-</td>
<td>assumed = Cl33 Bjergbakke et al. (1981)</td>
</tr>
<tr>
<td>no</td>
<td>reaction</td>
<td>n</td>
<td>$k_0 , [\text{M}^{(\text{1-n})}\text{s}^{-1}]$</td>
<td>$-E_a / R , \text{K}$</td>
<td>reference</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Br 1</td>
<td>$\text{Br} + \text{OH}^- \rightarrow \text{BrOH}^-$</td>
<td>2</td>
<td>1.3×10^{10}</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 2</td>
<td>$\text{Br} + \text{DOM} \rightarrow \text{Br}^- + \text{HO}_2$</td>
<td>2</td>
<td>2.0×10^{8}</td>
<td></td>
<td>estimated (C. Anastasio, pers. comm.) from Ross et al. (1998)</td>
</tr>
<tr>
<td>Br 3</td>
<td>$\text{Br}^- + \text{OH} \rightarrow \text{BrOH}^-$</td>
<td>2</td>
<td>1.1×10^{10}</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 4</td>
<td>$\text{Br}^- + \text{O}_3 \rightarrow \text{BrO}^-$</td>
<td>2</td>
<td>2.1×10^2</td>
<td>-4450</td>
<td>Hang and Hoigne (1983)</td>
</tr>
<tr>
<td>Br 5</td>
<td>$\text{Br}^- + \text{NO}_3 \rightarrow \text{Br} + \text{NO}_3^-$</td>
<td>2</td>
<td>3.8×10^9</td>
<td></td>
<td>Zellner et al. 1996 in Herrmann et al. (2000)</td>
</tr>
<tr>
<td>Br 6</td>
<td>$\text{Br}^- + \text{SO}_4^2- \rightarrow \text{Br} + \text{SO}_4^2-$</td>
<td>2</td>
<td>2.1×10^9</td>
<td></td>
<td>Jacobi (1996)</td>
</tr>
<tr>
<td>Br 7</td>
<td>$\text{Br}^- + \text{HSO}_5^- \rightarrow \text{HOBr} + \text{SO}_4^2-$</td>
<td>2</td>
<td>1.0</td>
<td>-5338</td>
<td>Fortnum et al. (1960)</td>
</tr>
<tr>
<td>Br 8</td>
<td>$\text{Br}^- + \text{HOBr} + \text{H}^+ \rightarrow \text{Br}^-$</td>
<td>3</td>
<td>1.6×10^{10}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Br 9</td>
<td>$\text{Br}_2 \rightarrow \text{Br}^- + \text{HOBr} + \text{H}^+$</td>
<td>1</td>
<td>9.7×10^1</td>
<td>7457</td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Br 10</td>
<td>$\text{Br}_2^- + \text{O}_3^- \rightarrow \text{Br}^- + \text{Br}^-$</td>
<td>2</td>
<td>1.7×10^8</td>
<td></td>
<td>Wagner and Strehlow (1987)</td>
</tr>
<tr>
<td>Br 11</td>
<td>$\text{Br}_2 + \text{HO}_2 \rightarrow \text{Br}_2 + \text{H}_2\text{O}_2 - \text{H}^+$</td>
<td>2</td>
<td>4.4×10^9</td>
<td></td>
<td>Matthew et al. (2003)</td>
</tr>
<tr>
<td>Br 12</td>
<td>$\text{Br}_2 + \text{H}_2\text{O}_2 \rightarrow \text{Br}^- + \text{Br}^- + \text{H}^+ + \text{HO}_2$</td>
<td>2</td>
<td>5.0×10^2</td>
<td></td>
<td>Chameides and Stelson (1992)</td>
</tr>
<tr>
<td>Br 13</td>
<td>$\text{Br}_2^- + \text{Br}_2 \rightarrow \text{Br}^- + \text{Br}^- + \text{Br}_2^-</td>
<td>2</td>
<td>1.9 \times 10^9</td>
<td></td>
<td>Ross et al. (1992)</td>
</tr>
<tr>
<td>Br 14</td>
<td>$\text{Br}_2^- + \text{CH}_3\text{OOH} \rightarrow \text{Br}^- + \text{Br}^- + \text{H}^+ + \text{CH}_3\text{OO}$</td>
<td>2</td>
<td>1.0×10^5</td>
<td></td>
<td>assumed by Jacobi (1996)</td>
</tr>
<tr>
<td>Br 15</td>
<td>$\text{Br}_2^- + \text{DOM} \rightarrow \text{Br}^- + \text{Br}^- + \text{HO}_2$</td>
<td>2</td>
<td>1.0×10^5</td>
<td></td>
<td>estimated (C. Anastasio, pers. comm.) from Ross et al. (1998)</td>
</tr>
<tr>
<td>Br 16</td>
<td>$\text{Br}_2^- + \text{NO}_2^- \rightarrow \text{Br}^- + \text{Br}^- + \text{NO}_2$</td>
<td>2</td>
<td>1.7×10^7</td>
<td>-1720</td>
<td>Shoute et al. (1991)</td>
</tr>
<tr>
<td>Br 17</td>
<td>$\text{Br}_2^- + \text{HSO}_5^- \rightarrow \text{Br}^- + \text{Br}^- + \text{H}^+ + \text{SO}_3^-$</td>
<td>2</td>
<td>6.3×10^7</td>
<td>-782</td>
<td>Shoute et al. (1991)</td>
</tr>
<tr>
<td>Br 18</td>
<td>$\text{Br}_2^- + \text{SO}_4^2- \rightarrow \text{Br}^- + \text{Br}^- + \text{SO}_3^-$</td>
<td>2</td>
<td>2.2×10^8</td>
<td>-650</td>
<td>Shoute et al. (1991)</td>
</tr>
<tr>
<td>Br 19</td>
<td>$\text{Br}_2^- + \text{DMS} \rightarrow 0.5 \text{CH}_3\text{SO}_3^- + 0.5 \text{CH}_3\text{OO} + 0.5 \text{HSO}_4^- + \text{HCHO} + 2 \text{Br}^- + 2 \text{H}^+$</td>
<td>2</td>
<td>3.2×10^9</td>
<td></td>
<td>rate from Ross et al. (1998)</td>
</tr>
<tr>
<td>Br 20</td>
<td>$\text{BrOH}^- \rightarrow \text{Br}^- + \text{OH}$</td>
<td>1</td>
<td>3.3×10^7</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 21</td>
<td>$\text{BrOH}^- \rightarrow \text{Br} + \text{OH}^-$</td>
<td>1</td>
<td>4.2×10^6</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 22</td>
<td>$\text{BrOH}^- + \text{H}^+ \rightarrow \text{Br}^- + \text{H}_2\text{O}$</td>
<td>2</td>
<td>4.4×10^{10}</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 23</td>
<td>$\text{BrOH}^- + \text{Br}^- \rightarrow \text{Br}_2^- + \text{OH}^-$</td>
<td>2</td>
<td>1.9×10^8</td>
<td></td>
<td>Zehavi and Rabani (1972)</td>
</tr>
<tr>
<td>Br 24</td>
<td>$\text{BrO}^- + \text{SO}_4^2- \rightarrow \text{Br}^- + \text{SO}_4^2-$</td>
<td>2</td>
<td>1.0×10^8</td>
<td></td>
<td>Troy and Margerum (1991)</td>
</tr>
<tr>
<td>Br 25</td>
<td>$\text{HOBr} + \text{HO}_2 \rightarrow \text{Br}^- + \text{O}_2$</td>
<td>2</td>
<td>1.0×10^9</td>
<td></td>
<td>Herrmann et al. (1999)</td>
</tr>
<tr>
<td>Br 26</td>
<td>$\text{HOBr} + \text{O}_3^- \rightarrow \text{Br}^- + \text{OH}^- + \text{O}_2$</td>
<td>2</td>
<td>3.5×10^9</td>
<td></td>
<td>Schwarz and Bielski (1986)</td>
</tr>
<tr>
<td>Br 27</td>
<td>$\text{HOBr} + \text{H}_2\text{O}_2 \rightarrow \text{Br}^- + \text{H}^+ + \text{O}_2$</td>
<td>2</td>
<td>1.2×10^6</td>
<td></td>
<td>von Gunten and Oliveras (1998)</td>
</tr>
<tr>
<td>Br 28</td>
<td>$\text{HOBr} + \text{SO}_4^2- \rightarrow \text{Br}^- + \text{HSO}_4^-$</td>
<td>2</td>
<td>5.0×10^9</td>
<td></td>
<td>Troy and Margerum (1991)</td>
</tr>
<tr>
<td>Br 29</td>
<td>$\text{HOBr} + \text{HSO}_4^- \rightarrow \text{Br}^- + \text{HSO}_4^- + \text{H}^+$</td>
<td>2</td>
<td>5.0×10^9</td>
<td></td>
<td>assumed = Br28</td>
</tr>
<tr>
<td>Br 30</td>
<td>$\text{Br}_2 + \text{HO}_2 \rightarrow \text{Br}_2^- + \text{H}^+ + \text{O}_2$</td>
<td>2</td>
<td>1.1×10^8</td>
<td></td>
<td>Ross et al. (1998)</td>
</tr>
<tr>
<td>Br 31</td>
<td>$\text{Br}_2 + \text{O}_3^- \rightarrow \text{Br}_2^- + \text{O}_2$</td>
<td>2</td>
<td>5.6×10^9</td>
<td></td>
<td>Ross et al. (1998)</td>
</tr>
</tbody>
</table>
Table 3: Continued.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>n</th>
<th>$k_0 \text{ [M}^{(-n)}\text{s}^{-1}]$</th>
<th>$-E_a / R \text{ [K]}$</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 I</td>
<td>HOI + I$^-$ + H$^+$ \rightarrow I$_2$</td>
<td>3</td>
<td>4.4×10^{12}</td>
<td></td>
<td>Eigen and Kustin (1962)</td>
</tr>
<tr>
<td>2 I</td>
<td>HOI + Cl$^-$ + H$^+$ \rightarrow ICl</td>
<td>3</td>
<td>2.9×10^{10}</td>
<td></td>
<td>Wang et al. (1989)</td>
</tr>
<tr>
<td>3 I</td>
<td>ICl \rightarrow HOI + Cl$^-$ + H$^+$</td>
<td>1</td>
<td>2.4×10^{6}</td>
<td></td>
<td>Wang et al. (1989)</td>
</tr>
<tr>
<td>4 I</td>
<td>HOI + Br$^-$ + H$^+$ \rightarrow IBr</td>
<td>3</td>
<td>3.3×10^{12}</td>
<td></td>
<td>Troy et al. (1991)</td>
</tr>
<tr>
<td>5 I</td>
<td>IBr \rightarrow HOI + H$^+$ + Br$^-$</td>
<td>1</td>
<td>8.0×10^{5}</td>
<td></td>
<td>Troy et al. (1991)</td>
</tr>
<tr>
<td>6 I</td>
<td>HOCl + I$^-$ + H$^+$ \rightarrow ICl</td>
<td>3</td>
<td>3.5×10^{11}</td>
<td></td>
<td>Nagy et al. (1988)</td>
</tr>
<tr>
<td>7 I</td>
<td>HOBr + I$^-$ \rightarrow IBr + OH$^-$</td>
<td>2</td>
<td>5.0×10^{9}</td>
<td></td>
<td>Troy and Margerum (1991)</td>
</tr>
<tr>
<td>8 I</td>
<td>IO$_2$ + H$_2$O$_2$ \rightarrow IO$_3$</td>
<td>2</td>
<td>6.0×10^{1}</td>
<td></td>
<td>Furrow (1987)</td>
</tr>
<tr>
<td>9 I</td>
<td>IO + IO \rightarrow HOI + IO$_2$ + H$^+$</td>
<td>2</td>
<td>1.5×10^{9}</td>
<td></td>
<td>Buxton et al. (1986)</td>
</tr>
<tr>
<td>10 I</td>
<td>I$^-$ + O$_3$ \rightarrow HOI</td>
<td>2</td>
<td>4.2×10^{9}</td>
<td>-9311</td>
<td>Magi et al. (1997)</td>
</tr>
<tr>
<td>11 I</td>
<td>HOI + Cl$_2$ \rightarrow IO$_2$ + 2Cl$^-$ + 3H$^+$</td>
<td>2</td>
<td>1.0×10^{6}</td>
<td></td>
<td>Lengyel et al. (1996)</td>
</tr>
<tr>
<td>12 I</td>
<td>HOI + HOCl \rightarrow IO$_2$ + Cl$^-$ + 2 H$^+$</td>
<td>2</td>
<td>5.0×10^{5}</td>
<td></td>
<td>Citri and Epstein (1988)</td>
</tr>
<tr>
<td>13 I</td>
<td>HOI + HOBr \rightarrow IO$_2$ + Br$^-$ + 2 H$^+$</td>
<td>2</td>
<td>1.0×10^{6}</td>
<td></td>
<td>Chinake and Simoyi (1996)</td>
</tr>
<tr>
<td>14 I</td>
<td>IO$_2$ + HOCl \rightarrow IO$_3$ + Cl$^-$ + H$^+$</td>
<td>2</td>
<td>1.5×10^{6}</td>
<td></td>
<td>Lengyel et al. (1996)</td>
</tr>
<tr>
<td>15 I</td>
<td>IO$_2$ + HOBr \rightarrow IO$_3$ + Br$^-$ + H$^+$</td>
<td>2</td>
<td>1.0×10^{6}</td>
<td></td>
<td>Chinake and Simoyi (1996)</td>
</tr>
<tr>
<td>16 I</td>
<td>IO$_2$ + HOI \rightarrow IO$_3$ + I$^-$ + H$^+$</td>
<td>2</td>
<td>6.0×10^{2}</td>
<td></td>
<td>Chinake and Simoyi (1996)</td>
</tr>
<tr>
<td>17 I</td>
<td>I$_2$ + HSO$_3$ \rightarrow 2 I$^-$ + HSO$_2$ + 2 H$^+$</td>
<td>2</td>
<td>1.0×10^{6}</td>
<td></td>
<td>Olsen and Epstein (1991)</td>
</tr>
<tr>
<td>Hx 1</td>
<td>Br$^-$ + HOCl + H$^+$ \rightarrow BrCl</td>
<td>3</td>
<td>1.3×10^{6}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Hx 2</td>
<td>Cl$^-$ + HOBr + H$^+$ \rightarrow BrCl</td>
<td>3</td>
<td>2.3×10^{10}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Hx 3</td>
<td>BrCl \rightarrow Cl$^-$ + HOBr + H$^+$</td>
<td>1</td>
<td>3.0×10^{6}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Hx 4</td>
<td>Br$^-$ + ClO$^-$ + H$^+$ \rightarrow BrCl + OH$^-$</td>
<td>3</td>
<td>3.7×10^{10}</td>
<td></td>
<td>Kumar and Margerum (1987)</td>
</tr>
<tr>
<td>Hx 5</td>
<td>Cl$_2$ + Br$^-$ \rightarrow BrCl$_2$</td>
<td>2</td>
<td>7.7×10^{9}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>Hx 6</td>
<td>BrCl$_2$ \rightarrow Cl$_2$ + Br$^-$</td>
<td>1</td>
<td>1.83×10^{3}</td>
<td></td>
<td>Liu and Margerum (2001)</td>
</tr>
<tr>
<td>hv 1</td>
<td>O$_3$ + hv \rightarrow OH + OH + O$_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 2</td>
<td>H$_2$O$_2$ + hv \rightarrow OH + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 3</td>
<td>NO$_3$ + hv \rightarrow NO$_2$ + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Zellner et al. (1990)</td>
</tr>
<tr>
<td>hv 4</td>
<td>NO$_2$ + hv \rightarrow NO + OH</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Zellner et al. (1990); Burley and Johnston (1992)</td>
</tr>
<tr>
<td>hv 5</td>
<td>HOCl + hv \rightarrow OH + Cl</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 6</td>
<td>Cl$_2$ + hv \rightarrow Cl + Cl</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 7</td>
<td>HOBr + hv \rightarrow OH + Br</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 8</td>
<td>Br$_2$ + hv \rightarrow Br + Br</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
<tr>
<td>hv 9</td>
<td>BrCl + hv \rightarrow Cl + Br</td>
<td>1</td>
<td>1</td>
<td></td>
<td>assumed 2x gas phase</td>
</tr>
</tbody>
</table>

n is the order of the reaction. 1 photolysis rates calculated online. The temperature dependence is $k = k_0 \times \exp\left(\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right)$, $T_0 = 298$ K.
Table 4: Heterogeneous reactions.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>k</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1</td>
<td>$\text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_3$</td>
<td>$k_t(\text{N}_2\text{O}5) w{l,i}[\text{H}_2\text{O}]/\text{Het}_T$</td>
<td>Behnke et al. (1994), Behnke et al. (1997)</td>
</tr>
<tr>
<td>H 2</td>
<td>$\text{N}_2\text{O}_5 + \text{Cl}^- \rightarrow \text{ClNO}_2 + \text{NO}_3^-$</td>
<td>$k_t(\text{N}_2\text{O}5) w{l,i} f(\text{Cl}^-) [\text{Cl}^-]/\text{Het}_T$</td>
<td>Behnke et al. (1994), Behnke et al. (1997)</td>
</tr>
<tr>
<td>H 3</td>
<td>$\text{N}_2\text{O}_5 + \text{Br}^- \rightarrow \text{BrNO}_2 + \text{NO}_3^-$</td>
<td>$k_t(\text{N}_2\text{O}5) w{l,i} f(\text{Br}^-) [\text{Br}^-]/\text{Het}_T$</td>
<td>Behnke et al. (1994), Behnke et al. (1997)</td>
</tr>
<tr>
<td>H 4</td>
<td>$\text{ClNO}_3 + \text{H}_2\text{O} \rightarrow \text{HOCL}_aq + \text{HNO}_3$</td>
<td>$k_t(\text{ClNO}3) w{l,i} [\text{H}_2\text{O}]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 5</td>
<td>$\text{ClNO}_3 + \text{Cl}^- \rightarrow \text{Cl}_2 + \text{NO}_3^-$</td>
<td>$k_t(\text{ClNO}3) w{l,i} f(\text{Cl}^-) [\text{Cl}^-]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 6</td>
<td>$\text{ClNO}_3 + \text{Br}^- \rightarrow \text{BrCl}_aq + \text{NO}_3^-$</td>
<td>$k_t(\text{ClNO}3) w{l,i} f(\text{Br}^-) [\text{Br}^-]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 7</td>
<td>$\text{BrNO}_3 + \text{H}_2\text{O} \rightarrow \text{HBr}_aq + \text{HNO}_3$</td>
<td>$k_t(\text{BrNO}3) w{l,i} [\text{H}_2\text{O}]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 8</td>
<td>$\text{BrNO}_3 + \text{Cl}^- \rightarrow \text{BrCl}_aq + \text{NO}_3^-$</td>
<td>$k_t(\text{BrNO}3) w{l,i} f(\text{Cl}^-) [\text{Cl}^-]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 9</td>
<td>$\text{BrNO}_3 + \text{Br}^- \rightarrow \text{Br}_2 + \text{NO}_3^-$</td>
<td>$k_t(\text{BrNO}3) w{l,i} f(\text{Br}^-) [\text{Br}^-]/\text{Het}_T$</td>
<td>see note</td>
</tr>
<tr>
<td>H 10</td>
<td>$\text{INO}_3 + \text{H}_2\text{O} \rightarrow \text{HOI}_aq + \text{HNO}_3$</td>
<td>$k_t(\text{INO}3) w{l,i}$</td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
<tr>
<td>H 11</td>
<td>$\text{HI} + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{I}^-$</td>
<td>$k_t(\text{HI}) w_{l,i}$</td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
<tr>
<td>H 12</td>
<td>$\text{INO}_2 + \text{H}_2\text{O} \rightarrow \text{HOI}_aq + \text{HNO}_aq$</td>
<td>$k_t(\text{INO}2) w{l,i}$</td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
<tr>
<td>H 13</td>
<td>$\text{OIO}_3 + \text{H}_2\text{O} \rightarrow \text{HOI}_aq + \text{HO}_aq$</td>
<td>$k_t(\text{OIO}3) w{l,i}$</td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
<tr>
<td>H 14</td>
<td>$\text{HOI} + \text{H}_2\text{O} \rightarrow \text{IO}^- + \text{H}^+$</td>
<td>$k_t(\text{HOI}) w_{l,i}$</td>
<td>assumed, see von Glasow et al. (2002b)</td>
</tr>
</tbody>
</table>

For a definition of k_t and $w_{l,i}$ see von Glasow et al. (2002a) or von Glasow (2000). Het$_T = [\text{H}_2\text{O} + f(\text{Cl}^-) [\text{Cl}^-] + f(\text{Br}^-) [\text{Br}^-]]$, with $f(\text{Cl}^-) = 5.0 \times 10^2$ and $f(\text{Br}^-) = 3.0 \times 10^5$. H4 - H9: the total rate is determined by k_t, the distribution among the different reaction paths was assumed to be the same as for reactions H1 - H3.
Table 5: Aqueous phase equilibrium constants.

<table>
<thead>
<tr>
<th>no</th>
<th>reaction</th>
<th>m</th>
<th>n</th>
<th>K_0 [M$^{n-m}$]</th>
<th>$-\Delta H/R$ [K]</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ 1</td>
<td>CO$_{2aq}$ \rightleftharpoons H$^+$ + HCO$_3^-$</td>
<td>1</td>
<td>2</td>
<td>4.3×10^{-7}</td>
<td>-913</td>
<td>Chameides (1984)</td>
</tr>
<tr>
<td>EQ 2</td>
<td>NH$_{3aq}$ \rightleftharpoons OH$^-$ + NH$_4^+$</td>
<td>1</td>
<td>2</td>
<td>1.7×10^{-5}</td>
<td>-4325</td>
<td>Chameides (1984)</td>
</tr>
<tr>
<td>EQ 3</td>
<td>H2O${aq}$ \rightleftharpoons H$^+$ + OH$^-$</td>
<td>1</td>
<td>2</td>
<td>1.0×10^{-14}</td>
<td>-6716</td>
<td>Chameides (1984)</td>
</tr>
<tr>
<td>EQ 4</td>
<td>HCOOH$_{aq}$ \rightleftharpoons H$^+$ + HCOO$^-$</td>
<td>1</td>
<td>2</td>
<td>1.8×10^{-4}</td>
<td></td>
<td>Weast (1980)</td>
</tr>
<tr>
<td>EQ 5</td>
<td>HSO$_3^-$ \rightleftharpoons H$^+$ + SO$_3^{2-}$</td>
<td>1</td>
<td>2</td>
<td>6.0×10^{-8}</td>
<td>1120</td>
<td>Chameides (1984)</td>
</tr>
<tr>
<td>EQ 6</td>
<td>H$_2$SO$_4aq$ \rightleftharpoons H$^+$ + HSO$_4^-$</td>
<td>1</td>
<td>2</td>
<td>1.0×10^{3}</td>
<td></td>
<td>Seinfeld and Pandis (1998)</td>
</tr>
<tr>
<td>EQ 7</td>
<td>HSO$_4^-$ \rightleftharpoons H$^+$ + SO$_4^{2-}$</td>
<td>1</td>
<td>2</td>
<td>1.2×10^{-2}</td>
<td>1120</td>
<td>Weast (1980)</td>
</tr>
<tr>
<td>EQ 8</td>
<td>HO$_2$aq \rightleftharpoons O$_2^-$ + H$^+$</td>
<td>1</td>
<td>2</td>
<td>1.6×10^{-5}</td>
<td></td>
<td>Weinstein-Lloyd and Schwartz (1991)</td>
</tr>
<tr>
<td>EQ 9</td>
<td>SO$_2$aq \rightleftharpoons H$^+$ + HS$_2$O$_3^-$</td>
<td>1</td>
<td>2</td>
<td>1.7×10^{-7}</td>
<td>2090</td>
<td>Chameides (1984)</td>
</tr>
<tr>
<td>EQ 10</td>
<td>Cl2 \rightleftharpoons Cl${aq}$ $+$ Cl$^-$</td>
<td>1</td>
<td>2</td>
<td>5.2×10^{-6}</td>
<td></td>
<td>Jayson et al. (1973)</td>
</tr>
<tr>
<td>EQ 11</td>
<td>HOCIO$_{aq}$ \rightleftharpoons H$^+$ + ClO$^-$</td>
<td>1</td>
<td>2</td>
<td>3.2×10^{-8}</td>
<td></td>
<td>Lax (1969)</td>
</tr>
<tr>
<td>EQ 12</td>
<td>HBr$_{aq}$ \rightleftharpoons H$^+$ + Br$^-$</td>
<td>1</td>
<td>2</td>
<td>1.0×10^{9}</td>
<td></td>
<td>Lax (1969)</td>
</tr>
<tr>
<td>EQ 13</td>
<td>Br2 \rightleftharpoons Br${aq}$ $+$ Br$^-$</td>
<td>1</td>
<td>2</td>
<td>9.1×10^{-6}</td>
<td></td>
<td>Mamou et al. (1977)</td>
</tr>
<tr>
<td>EQ 14</td>
<td>HOBr$_{aq}$ \rightleftharpoons H$^+$ + BrO$^-$</td>
<td>1</td>
<td>2</td>
<td>2.3×10^{-9}</td>
<td>-3091</td>
<td>Kelley and Tartar (1956)</td>
</tr>
<tr>
<td>EQ 15</td>
<td>BrCl$_{aq}$ + Cl$^-$ \rightleftharpoons BrCl$_2$</td>
<td>2</td>
<td>1</td>
<td>3.8</td>
<td>1143</td>
<td>Wang et al. (1994)</td>
</tr>
<tr>
<td>EQ 16</td>
<td>BrCl$_{aq}$ + Br$^-$ \rightleftharpoons Br$_2$Cl$^-$</td>
<td>2</td>
<td>1</td>
<td>1.8×10^{4}</td>
<td></td>
<td>Wang et al. (1994)</td>
</tr>
<tr>
<td>EQ 17</td>
<td>Br$_{2aq}$ + Cl$^-$ \rightleftharpoons Br$_2$Cl$^-$</td>
<td>2</td>
<td>1</td>
<td>1.3</td>
<td></td>
<td>Wang et al. (1994)</td>
</tr>
<tr>
<td>EQ 18</td>
<td>HNO$_3aq$ \rightleftharpoons H$^+$ + NO$_3^-$</td>
<td>1</td>
<td>2</td>
<td>1.5×10^{1}</td>
<td></td>
<td>Davis and de Bruin (1964)</td>
</tr>
<tr>
<td>EQ 19</td>
<td>HCl$_{aq}$ \rightleftharpoons H$^+$ + Cl$^-$</td>
<td>1</td>
<td>2</td>
<td>1.7×10^{6}</td>
<td></td>
<td>Marsh and McElroy (1985)</td>
</tr>
<tr>
<td>EQ 20</td>
<td>HONO$_{aq}$ \rightleftharpoons H$^+$ + NO$_2^-$</td>
<td>1</td>
<td>2</td>
<td>5.1×10^{-4}</td>
<td>-1260</td>
<td>Schwartz and White (1981)</td>
</tr>
<tr>
<td>EQ 21</td>
<td>HNO$_4aq$ \rightleftharpoons NO$_4^-$ + H$^+$</td>
<td>1</td>
<td>2</td>
<td>1.0×10^{-5}</td>
<td>8700</td>
<td>Warneck (1999)</td>
</tr>
<tr>
<td>EQ 22</td>
<td>ICl$_{aq}$ + Cl$^-$ \rightleftharpoons ICl$_2$</td>
<td>2</td>
<td>1</td>
<td>7.7×10^{1}</td>
<td></td>
<td>Wang et al. (1989)</td>
</tr>
<tr>
<td>EQ 23</td>
<td>IBr$_{aq}$ + Br$^-$ \rightleftharpoons IBr$_2$</td>
<td>2</td>
<td>1</td>
<td>2.9×10^{2}</td>
<td></td>
<td>Troy et al. (1991)</td>
</tr>
<tr>
<td>EQ 24</td>
<td>ICl$_{aq}$ + Br$^-$ \rightleftharpoons IClBr$^-$</td>
<td>2</td>
<td>1</td>
<td>1.8×10^{3}</td>
<td></td>
<td>assumed = EQ 16</td>
</tr>
<tr>
<td>EQ 25</td>
<td>IBr$_{aq}$ + Cl$^-$ \rightleftharpoons IClBr$^-$</td>
<td>2</td>
<td>1</td>
<td>1.3</td>
<td></td>
<td>assumed = EQ 17</td>
</tr>
</tbody>
</table>

The temperature dependence is $K = K_0 \times \exp\left(\frac{-\Delta H}{R \cdot T}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)$, $T_0 = 298$ K.
<table>
<thead>
<tr>
<th>specie</th>
<th>K_H^a [M/atm]</th>
<th>$-\Delta_{solv}H/R$ [K]</th>
<th>reference</th>
<th>α^a</th>
<th>$-\Delta_{obs}H/R$ [K]</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$</td>
<td>1.2×10^{-2}</td>
<td>2560</td>
<td>Chameides (1984)</td>
<td>0.002</td>
<td>(at 292 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.3×10^{-3}</td>
<td>1500</td>
<td>Wilhelm et al. (1977)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated</td>
</tr>
<tr>
<td>OH</td>
<td>3.0×10^1</td>
<td>4300</td>
<td>Hanson et al. (1992)</td>
<td>0.01</td>
<td>(at 293 K)</td>
<td>Takami et al. (1998)</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>3.9×10^3</td>
<td>5900</td>
<td>Hanson et al. (1992)</td>
<td>0.2</td>
<td>(at 293 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>1.0×10^5</td>
<td>6338</td>
<td>Lind and Kok (1994)</td>
<td>0.077</td>
<td>2769</td>
<td>Worsnop et al. (1989)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>6.4×10^{-3}</td>
<td>2500</td>
<td>Lelieveld and Crutzen (1991)</td>
<td>0.0015</td>
<td>(at 298 K)</td>
<td>Ponche et al. (1993)</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>2.0</td>
<td>2000</td>
<td>Thomas et al. (1993)</td>
<td>0.04</td>
<td>(at 273 K)</td>
<td>Rudich et al. (1996)</td>
</tr>
<tr>
<td>N$_2$O$_5$</td>
<td>∞</td>
<td>—</td>
<td>estimated</td>
<td>0.1</td>
<td>(at 195-300 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>HONO</td>
<td>4.9×10^1</td>
<td>4780</td>
<td>Schwartz and White (1981)</td>
<td>0.04</td>
<td>(at 247-297 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>HNO$_2$</td>
<td>1.7×10^5</td>
<td>8694</td>
<td>Lelieveld and Crutzen (1991)</td>
<td>0.5</td>
<td>(at RT)</td>
<td>Abbatt and Waschewsky (1998)</td>
</tr>
<tr>
<td>HNO$_4$</td>
<td>1.2×10^4</td>
<td>6900</td>
<td>Régimbal and Mozurkewich (1997)</td>
<td>0.1</td>
<td>(at 200 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>5.8×10^4</td>
<td>4085</td>
<td>Chameides (1984)</td>
<td>0.06</td>
<td>(at 295 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>CH$_3$OO</td>
<td>6.0</td>
<td>=HO$_2$</td>
<td>Pandis and Seinfeld (1989)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated</td>
</tr>
<tr>
<td>ROOH</td>
<td>3.0×10^2</td>
<td>5322</td>
<td>Lind and Kok (1994)</td>
<td>0.0046</td>
<td>3273</td>
<td>Magi et al. (1997)</td>
</tr>
<tr>
<td>HCHO</td>
<td>7.0×10^3</td>
<td>6425</td>
<td>Chameides (1984)</td>
<td>0.04</td>
<td>(at 260-270 K)</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>HCOOH</td>
<td>3.7×10^3</td>
<td>5700</td>
<td>Chameides (1984)</td>
<td>0.014</td>
<td>3978</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>3.1×10^{-2}</td>
<td>2423</td>
<td>Chameides (1984)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated</td>
</tr>
<tr>
<td>HCl</td>
<td>1.2</td>
<td>9001</td>
<td>Brimblecombe and Clegg (1989)</td>
<td>0.074</td>
<td>3072</td>
<td>Schweitzer et al. (2000)</td>
</tr>
<tr>
<td>HOCl</td>
<td>6.7×10^2</td>
<td>5862</td>
<td>Huthwelker et al. (1995)</td>
<td>=HOBr</td>
<td>=HOBr</td>
<td>estimated</td>
</tr>
<tr>
<td>ClONO$_2$</td>
<td>∞</td>
<td>—</td>
<td>estimated</td>
<td>0.1</td>
<td>(at RT)</td>
<td>Koch and Rossi (1998)</td>
</tr>
<tr>
<td>Cl$_2$</td>
<td>9.1×10^{-2}</td>
<td>2500</td>
<td>Wilhelm et al. (1977)</td>
<td>0.038</td>
<td>6546</td>
<td>Hu et al. (1995)</td>
</tr>
<tr>
<td>HBr</td>
<td>1.3</td>
<td>10239</td>
<td>Brimblecombe and Clegg (1989)</td>
<td>0.031</td>
<td>3940</td>
<td>Schweitzer et al. (2000)</td>
</tr>
<tr>
<td>HOBr</td>
<td>9.3×10^4</td>
<td>=HOCl</td>
<td>Vogt et al. (1996)</td>
<td>0.5</td>
<td>(at RT)</td>
<td>Abbatt and Waschewsky (1998)</td>
</tr>
<tr>
<td>BrNO$_3$</td>
<td>∞</td>
<td>—</td>
<td>estimated</td>
<td>0.8</td>
<td>0</td>
<td>Hanson et al. (1996)</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>7.6×10^{-1}</td>
<td>4094</td>
<td>Dean (1992)</td>
<td>0.038</td>
<td>6546</td>
<td>Hu et al. (1995)</td>
</tr>
<tr>
<td>BrCl</td>
<td>9.4×10^{-1}</td>
<td>5600</td>
<td>Bartlett and Margerum (1999)</td>
<td>=Cl$_2$</td>
<td>=Cl$_2$</td>
<td>estimated</td>
</tr>
<tr>
<td>DMSO$_2$</td>
<td>5.0×10^4</td>
<td>=HCHO</td>
<td>De Bruyn et al. (1994)</td>
<td>0.048</td>
<td>2578</td>
<td>De Bruyn et al. (1994)</td>
</tr>
<tr>
<td>H$_2$S$_4$O$_4$</td>
<td>∞</td>
<td>—</td>
<td>assumed</td>
<td>0.03</td>
<td>5388</td>
<td>De Bruyn et al. (1994)</td>
</tr>
<tr>
<td>CH$_3$SO$_2$H</td>
<td>∞</td>
<td>—</td>
<td>assumed</td>
<td>0.65</td>
<td>(at 303 K)</td>
<td>Pöschl et al. (1998)</td>
</tr>
<tr>
<td>CH$_3$SO$_3$H</td>
<td>∞</td>
<td>—</td>
<td>assumed</td>
<td>0.0002</td>
<td>0</td>
<td>Lucas and Prinn (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.076</td>
<td>1762</td>
<td>De Bruyn et al. (1994)</td>
</tr>
</tbody>
</table>
Table 6: Continued.

<table>
<thead>
<tr>
<th>specie</th>
<th>K_H^0 [M/atm]</th>
<th>$-\Delta_{soln} H/R$ [K]</th>
<th>reference</th>
<th>α^0</th>
<th>$-\Delta_{obs} H/R$ [K]</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>∞</td>
<td>—</td>
<td>—</td>
<td>0.036</td>
<td>4130</td>
<td>Schweitzer et al. (2000)</td>
</tr>
<tr>
<td>IO</td>
<td>4.5×10^2</td>
<td>=HOI</td>
<td>estimated by Vogt et al. (1999)</td>
<td>0.5</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>HOI</td>
<td>4.5×10^2</td>
<td>=HOCl</td>
<td>Chatfield and Crutzen (1990)</td>
<td>=HOBr</td>
<td>=HOBr</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>INO2</td>
<td>∞</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>INO3</td>
<td>∞</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>I$_2$</td>
<td>3.0</td>
<td>4431</td>
<td>Palmer et al. (1985)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>ICl</td>
<td>1.1×10^2</td>
<td>=BrCl</td>
<td>Wagman et al. (1982)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>IBr</td>
<td>2.4×10^1</td>
<td>=BrCl</td>
<td>Wagman et al. (1982)</td>
<td>0.01</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>OIO</td>
<td>∞</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
<tr>
<td>HOI$_3$</td>
<td>∞</td>
<td>—</td>
<td>—</td>
<td>0.01</td>
<td>2000</td>
<td>estimated by Vogt et al. (1999)</td>
</tr>
</tbody>
</table>

For ROOH the values of CH$_3$OOH have been assumed. The temperature dependence is for the Henry constants is $K_H = K_H^0 \times \exp(-\Delta_{soln} H R/(1/T - 1/T_0))$, $T_0 = 298$ K and for the accommodation coefficients $\frac{d \ln(\frac{1}{\alpha})}{dT} = -\frac{\Delta_{obs} H}{R}$. RT stands for “room temperature”.
References

Buxton, G. V., Salmon, G. A., and Wang, J.: The equilibrium \(\text{NO}_3^- + \text{Cl}^- \leftrightarrow \text{NO}_3^- + \text{Cl} \): A laser flash photolysis and pulse radiolysis study of the reactivity of \(\text{NO}_3^- \) with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589 – 3593, 1999b.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

