Articles | Volume 6, issue 9
https://doi.org/10.5194/acp-6-2453-2006
https://doi.org/10.5194/acp-6-2453-2006
29 Jun 2006
29 Jun 2006

Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

L. Li, Z. M. Chen, Y. H. Zhang, T. Zhu, J. L. Li, and J. Ding

Abstract. Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8)×1014 molecule cm-3] oxidation by O3 [(1.2–12)×1014 molecule cm-3] was determined to be (1.4±0.3)×10-7 using the BET area as the reactive area and (7.7±1.6)×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

Download
Altmetrics
Final-revised paper
Preprint