Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 2
Atmos. Chem. Phys., 20, 649–669, 2020
https://doi.org/10.5194/acp-20-649-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 649–669, 2020
https://doi.org/10.5194/acp-20-649-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Jan 2020

Research article | 20 Jan 2020

Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs)

Otso Peräkylä et al.

Viewed

Total article views: 960 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
664 284 12 960 18 20
  • HTML: 664
  • PDF: 284
  • XML: 12
  • Total: 960
  • BibTeX: 18
  • EndNote: 20
Views and downloads (calculated since 04 Jul 2019)
Cumulative views and downloads (calculated since 04 Jul 2019)

Viewed (geographical distribution)

Total article views: 1,029 (including HTML, PDF, and XML) Thereof 1,026 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 02 Jul 2020
Publications Copernicus
Download
Short summary
Highly oxygenated organic molecules have been suggested to form a large part of secondary organic aerosol. However, with their exotic structures, their volatilities are not well known, making their exact role in particle formation hard to assess. In laboratory experiments, we found the volatility of HOMs formed in the ozonolysis of the monoterpene alpha-pinene to be in the middle of earlier estimates. The volatilities of HOMs could be well explained in terms of their molecular formulae.
Highly oxygenated organic molecules have been suggested to form a large part of secondary...
Citation