Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 10
Atmos. Chem. Phys., 20, 6015–6036, 2020
https://doi.org/10.5194/acp-20-6015-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 6015–6036, 2020
https://doi.org/10.5194/acp-20-6015-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 May 2020

Research article | 20 May 2020

Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period

Soyoung Ha et al.

Viewed

Total article views: 701 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
531 156 14 701 20 23
  • HTML: 531
  • PDF: 156
  • XML: 14
  • Total: 701
  • BibTeX: 20
  • EndNote: 23
Views and downloads (calculated since 28 Aug 2019)
Cumulative views and downloads (calculated since 28 Aug 2019)

Viewed (geographical distribution)

Total article views: 664 (including HTML, PDF, and XML) Thereof 660 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 02 Jul 2020
Publications Copernicus
Download
Short summary
This study examines the effect of aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) sensors on surface PM2.5 forecasts using the online coupled WRF-Chem forecasting model and the GSI 3D-Var analysis system. During the KORUS-AQ campaign period, the assimilation of GOCI AOD retrieved at the 550 nm wavelength greatly improved air quality forecasting up to 24 h when assimilated with surface PM2.5 observations, particularly for heavy pollution events.
This study examines the effect of aerosol optical depth (AOD) retrieved from the Korean...
Citation