Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 9
Atmos. Chem. Phys., 20, 5787–5809, 2020
https://doi.org/10.5194/acp-20-5787-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 20, 5787–5809, 2020
https://doi.org/10.5194/acp-20-5787-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 May 2020

Research article | 14 May 2020

Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations

Peter H. Zimmermann et al.

Data sets

EMAC-MESSy source segregated CH4 mixing ratios simulated along CARIBIC flight tracks P. H. Zimmermann https://doi.org/10.5281/zenodo.3786897

Publications Copernicus
Download
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission...
Citation