Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 9
Atmos. Chem. Phys., 20, 5457–5475, 2020
https://doi.org/10.5194/acp-20-5457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Multiphase chemistry of secondary aerosol formation under...

Atmos. Chem. Phys., 20, 5457–5475, 2020
https://doi.org/10.5194/acp-20-5457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 May 2020

Research article | 11 May 2020

Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China

Jun Zheng et al.

Viewed

Total article views: 857 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
592 250 15 857 50 14 19
  • HTML: 592
  • PDF: 250
  • XML: 15
  • Total: 857
  • Supplement: 50
  • BibTeX: 14
  • EndNote: 19
Views and downloads (calculated since 09 Dec 2019)
Cumulative views and downloads (calculated since 09 Dec 2019)

Viewed (geographical distribution)

Total article views: 627 (including HTML, PDF, and XML) Thereof 621 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 12 Jul 2020
Publications Copernicus
Download
Short summary
A high level of nitrous acid (HONO) is formed from NOx emitted by industrial activities; this HONO then promotes secondary air pollutant (e.g., aerosol and O3) formation within these plumes by contributing to free-radical production. Heterogeneous reactions on aerosol surfaces are found to be one of the major formation routes of HONO. Therefore, HONO plays a synergic role in haze formation in heavily industrialized areas.
A high level of nitrous acid (HONO) is formed from NOx emitted by industrial activities; this...
Citation