Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 2353–2366, 2020
https://doi.org/10.5194/acp-20-2353-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 2353–2366, 2020
https://doi.org/10.5194/acp-20-2353-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 Feb 2020

Research article | 28 Feb 2020

Pathway dependence of ecosystem responses in China to 1.5 °C global warming

Xu Yue et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Xu Yue on behalf of the Authors (20 Dec 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (10 Jan 2020) by Alex B. Guenther
RR by Anonymous Referee #1 (26 Jan 2020)
ED: Publish subject to minor revisions (review by editor) (29 Jan 2020) by Alex B. Guenther
AR by Xu Yue on behalf of the Authors (30 Jan 2020)  Author's response    Manuscript
ED: Publish as is (01 Feb 2020) by Alex B. Guenther
Publications Copernicus
Download
Short summary
We explore ecosystem responses in China to 1.5 °C global warming under stabilized versus transient pathways. Remarkably, GPP shows 30 % higher enhancement in the stabilized than the transient pathway because of the lower ozone (smaller damages to photosynthesis) and fewer aerosols (higher light availability) in the former pathway. Our analyses suggest that an associated reduction of CO2 and pollution emissions brings more benefits to ecosystems in China via 1.5 °C global warming.
We explore ecosystem responses in China to 1.5 °C global warming under stabilized versus...
Citation