Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 2303–2317, 2020
https://doi.org/10.5194/acp-20-2303-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 2303–2317, 2020
https://doi.org/10.5194/acp-20-2303-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 26 Feb 2020

Technical note | 26 Feb 2020

Technical note: Deep learning for creating surrogate models of precipitation in Earth system models

Theodore Weber et al.

Related authors

Reaching 1.5 °C and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
Simone Tilmes, Douglas E. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-76,https://doi.org/10.5194/esd-2019-76, 2019
Revised manuscript accepted for ESD
Short summary
Using Deep Learning to Fill Spatio-Temporal Data Gaps in Hydrological Monitoring Networks
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-196,https://doi.org/10.5194/hess-2019-196, 2019
Revised manuscript under review for HESS
Short summary
Fldgen v1.0: an emulator with internal variability and space–time correlation for Earth system models
Robert Link, Abigail Snyder, Cary Lynch, Corinne Hartin, Ben Kravitz, and Ben Bond-Lamberty
Geosci. Model Dev., 12, 1477–1489, https://doi.org/10.5194/gmd-12-1477-2019,https://doi.org/10.5194/gmd-12-1477-2019, 2019
Short summary
GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems
Katherine Calvin, Pralit Patel, Leon Clarke, Ghassem Asrar, Ben Bond-Lamberty, Ryna Yiyun Cui, Alan Di Vittorio, Kalyn Dorheim, Jae Edmonds, Corinne Hartin, Mohamad Hejazi, Russell Horowitz, Gokul Iyer, Page Kyle, Sonny Kim, Robert Link, Haewon McJeon, Steven J. Smith, Abigail Snyder, Stephanie Waldhoff, and Marshall Wise
Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019,https://doi.org/10.5194/gmd-12-677-2019, 2019
Short summary
Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity
Christopher G. Fletcher, Ben Kravitz, and Bakr Badawy
Atmos. Chem. Phys., 18, 17529–17543, https://doi.org/10.5194/acp-18-17529-2018,https://doi.org/10.5194/acp-18-17529-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020,https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions
Guy Dagan and Philip Stier
Atmos. Chem. Phys., 20, 6291–6303, https://doi.org/10.5194/acp-20-6291-2020,https://doi.org/10.5194/acp-20-6291-2020, 2020
Short summary
Aerosol indirect effects on the temperature–precipitation scaling
Nicolas Da Silva, Sylvain Mailler, and Philippe Drobinski
Atmos. Chem. Phys., 20, 6207–6223, https://doi.org/10.5194/acp-20-6207-2020,https://doi.org/10.5194/acp-20-6207-2020, 2020
Short summary
The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades
Ann Kristin Naumann and Christoph Kiemle
Atmos. Chem. Phys., 20, 6129–6145, https://doi.org/10.5194/acp-20-6129-2020,https://doi.org/10.5194/acp-20-6129-2020, 2020
Short summary
Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020,https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary

Cited articles

Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2011. a
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011. a
Bellucci, A., Haarsma, R., Bellouin, N., Booth, B., Cagnazzo, C., van den Hurk, B., Keenlyside, N., Koenigk, T., Massonnet, F., Materia, S., and Weiss, M.: Advancements in decadal climate predictability: The role of nonoceanic drivers, Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473, 2015. a
Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks, in: Advances in Neural Information Processing Systems, NIPS Proceedings, 1171–1179, 2015. a, b
Bengio, Y.: Practical recommendations for gradient-based training of deep architectures, in: Neural networks: Tricks of the trade, 437–478, Springer, 2012. a
Publications Copernicus
Download
Short summary
Climate model emulators can save computer time but are less accurate than full climate models. We use neural networks to build emulators of precipitation, trained on existing climate model runs. By doing so, we can capture nonlinearities and how the past state of a model (to some degree) shapes the future state. Our emulator outperforms a persistence forecast of precipitation.
Climate model emulators can save computer time but are less accurate than full climate models....
Citation