Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 3
Atmos. Chem. Phys., 20, 1607–1626, 2020
https://doi.org/10.5194/acp-20-1607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 20, 1607–1626, 2020
https://doi.org/10.5194/acp-20-1607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Feb 2020

Research article | 10 Feb 2020

Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions

Giulia Saponaro et al.

Related authors

Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018,https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Collocation mismatch uncertainties in satellite aerosol retrieval validation
Timo H. Virtanen, Pekka Kolmonen, Larisa Sogacheva, Edith Rodríguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018,https://doi.org/10.5194/amt-11-925-2018, 2018
Short summary
Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations
Giulia Saponaro, Pekka Kolmonen, Larisa Sogacheva, Edith Rodriguez, Timo Virtanen, and Gerrit de Leeuw
Atmos. Chem. Phys., 17, 3133–3143, https://doi.org/10.5194/acp-17-3133-2017,https://doi.org/10.5194/acp-17-3133-2017, 2017
Short summary
Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer
Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 10, 491–505, https://doi.org/10.5194/amt-10-491-2017,https://doi.org/10.5194/amt-10-491-2017, 2017
Short summary
A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements
G. Saponaro, P. Kolmonen, J. Karhunen, J. Tamminen, and G. de Leeuw
Atmos. Meas. Tech., 6, 2301–2309, https://doi.org/10.5194/amt-6-2301-2013,https://doi.org/10.5194/amt-6-2301-2013, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020,https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions
Guy Dagan and Philip Stier
Atmos. Chem. Phys., 20, 6291–6303, https://doi.org/10.5194/acp-20-6291-2020,https://doi.org/10.5194/acp-20-6291-2020, 2020
Short summary
Aerosol indirect effects on the temperature–precipitation scaling
Nicolas Da Silva, Sylvain Mailler, and Philippe Drobinski
Atmos. Chem. Phys., 20, 6207–6223, https://doi.org/10.5194/acp-20-6207-2020,https://doi.org/10.5194/acp-20-6207-2020, 2020
Short summary
The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades
Ann Kristin Naumann and Christoph Kiemle
Atmos. Chem. Phys., 20, 6129–6145, https://doi.org/10.5194/acp-20-6129-2020,https://doi.org/10.5194/acp-20-6129-2020, 2020
Short summary
Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020,https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. a, b, c, d
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res., 107, D3, https://doi.org/10.1029/2001JD000483, 2002. a, b
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a
Ban-Weiss, G. A., Jin, L., Bauer, S. E., Bennartz, R., Liu, X., Zhang, K., Ming, Y., Guo, H., and Jiang, J. H.: Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations, J. Geophys. Res.-Atmos., 119, 10876–10901, https://doi.org/10.1002/2014JD021722, 2014. a, b, c, d, e
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., accepted, 2020. a, b
Publications Copernicus
Download
Short summary
The understanding of cloud processes is based on the quality of the representation of cloud properties. We compared cloud parameters from three models with satellite observations. We report on the performance of each data source, highlighting strengths and deficiencies, which should be considered when deriving the effect of aerosols on cloud properties.
The understanding of cloud processes is based on the quality of the representation of cloud...
Citation