Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 973–986, 2019
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 973–986, 2019
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Jan 2019

Research article | 24 Jan 2019

Positive matrix factorization of organic aerosol: insights from a chemical transport model

Anthoula D. Drosatou et al.
Related authors  
Summertime aerosol volatility measurements in Beijing, China
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019,https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
A portable dual-smog-chamber system for atmospheric aerosol field studies
Christos Kaltsonoudis, Spiro D. Jorga, Evangelos Louvaris, Kalliopi Florou, and Spyros N. Pandis
Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019,https://doi.org/10.5194/amt-12-2733-2019, 2019
Short summary
Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations
Katerina S. Karadima, Vlasis G. Mavrantzas, and Spyros N. Pandis
Atmos. Chem. Phys., 19, 5571–5587, https://doi.org/10.5194/acp-19-5571-2019,https://doi.org/10.5194/acp-19-5571-2019, 2019
Short summary
Simulation of the chemical evolution of biomass burning organic aerosol
Georgia N. Theodoritsi and Spyros N. Pandis
Atmos. Chem. Phys., 19, 5403–5415, https://doi.org/10.5194/acp-19-5403-2019,https://doi.org/10.5194/acp-19-5403-2019, 2019
Short summary
Particle wall-loss correction methods in smog chamber experiments
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018,https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation
Nanna Myllys, Jakub Kubečka, Vitus Besel, Dina Alfaouri, Tinja Olenius, James Norman Smith, and Monica Passananti
Atmos. Chem. Phys., 19, 9753–9768, https://doi.org/10.5194/acp-19-9753-2019,https://doi.org/10.5194/acp-19-9753-2019, 2019
Short summary
Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing
Yuxuan Zhang, Meng Li, Yafang Cheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Xin Li, Dan Tong, Nana Wu, Xin Zhang, Bo Zheng, Yixuan Zheng, Yu Bo, Hang Su, and Qiang Zhang
Atmos. Chem. Phys., 19, 9663–9680, https://doi.org/10.5194/acp-19-9663-2019,https://doi.org/10.5194/acp-19-9663-2019, 2019
Short summary
Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events
Melissa A. Venecek, Xin Yu, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 9399–9412, https://doi.org/10.5194/acp-19-9399-2019,https://doi.org/10.5194/acp-19-9399-2019, 2019
Short summary
Isolating the climate change impacts on air-pollution-related-pathologies over central and southern Europe – a modelling approach on cases and costs
Patricia Tarín-Carrasco, María Morales-Suárez-Varela, Ulas Im, Jørgen Brandt, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019,https://doi.org/10.5194/acp-19-9385-2019, 2019
Short summary
Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds
Peter Bräuer, Camille Mouchel-Vallon, Andreas Tilgner, Anke Mutzel, Olaf Böge, Maria Rodigast, Laurent Poulain, Dominik van Pinxteren, Ralf Wolke, Bernard Aumont, and Hartmut Herrmann
Atmos. Chem. Phys., 19, 9209–9239, https://doi.org/10.5194/acp-19-9209-2019,https://doi.org/10.5194/acp-19-9209-2019, 2019
Short summary
Cited articles  
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Brinkman, G., Vance, G., Hannigan, M. P., and Milford, J. B.: Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data, Environ. Sci. Technol., 40, 1892–1901, 2006. 
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013. 
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C., Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS cooking Organic Aerosol at a rural site, Environ. Sci. Technol., 49, 13964–13972, 2015. 
Publications Copernicus
Download
Short summary
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the organic aerosol (OA) sources accurately is tested in this modeling study. The estimated uncertainty of the contribution of fresh biomass burning is less than 30 % and of the other primary sources is less than 40 %, when these sources contribute more than 20 % to the OA. Τhe first oxygenated OA factor includes mainly highly aged OA, while the second oxygenated OA factor contains fresher secondary OA.
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the...
Citation