Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
ACP | Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 973-986, 2019
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 973-986, 2019
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Jan 2019

Research article | 24 Jan 2019

Positive matrix factorization of organic aerosol: insights from a chemical transport model

Anthoula D. Drosatou et al.
Related authors  
Particle wall-loss correction methods in smog chamber experiments
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577-6588, https://doi.org/10.5194/amt-11-6577-2018,https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
A portable dual smog chamber system for atmospheric aerosol field studies
Christos Kaltsonoudis, Spiro D. Jorga, Evangelos Louvaris, Kalliopi Florou, and Spyros N. Pandis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-394,https://doi.org/10.5194/amt-2018-394, 2018
Manuscript under review for AMT
Short summary
Simulation of the chemical evolution of biomass burning organic aerosol
Georgia N. Theodoritsi and Spyros N. Pandis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1166,https://doi.org/10.5194/acp-2018-1166, 2018
Manuscript under review for ACP
Short summary
Insights into the morphology of multicomponent organic/inorganic aerosols from molecular dynamics simulations
Katerina S. Karadima, Vlasis G. Mavrantzas, and Spyros N. Pandis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1098,https://doi.org/10.5194/acp-2018-1098, 2018
Manuscript under review for ACP
Short summary
Simulation of the size-composition distribution of atmospheric nanoparticles over Europe
David Patoulias, Christos Fountoukis, Ilona Riipinen, Ari Asmi, Markku Kulmala, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 13639-13654, https://doi.org/10.5194/acp-18-13639-2018,https://doi.org/10.5194/acp-18-13639-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357-1371, https://doi.org/10.5194/acp-19-1357-2019,https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models
Marwa Majdi, Solene Turquety, Karine Sartelet, Carole Legorgeu, Laurent Menut, and Youngseob Kim
Atmos. Chem. Phys., 19, 785-812, https://doi.org/10.5194/acp-19-785-2019,https://doi.org/10.5194/acp-19-785-2019, 2019
Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US
Juhi Nagori, Ruud H. H. Janssen, Juliane L. Fry, Maarten Krol, Jose L. Jimenez, Weiwei Hu, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 701-729, https://doi.org/10.5194/acp-19-701-2019,https://doi.org/10.5194/acp-19-701-2019, 2019
Short summary
A potential source of atmospheric sulfate from O2-induced SO2 oxidation by ozone
Narcisse Tchinda Tsona and Lin Du
Atmos. Chem. Phys., 19, 649-661, https://doi.org/10.5194/acp-19-649-2019,https://doi.org/10.5194/acp-19-649-2019, 2019
Short summary
Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation
Ge Zhang, Yang Gao, Wenju Cai, L. Ruby Leung, Shuxiao Wang, Bin Zhao, Minghuai Wang, Huayao Shan, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 565-576, https://doi.org/10.5194/acp-19-565-2019,https://doi.org/10.5194/acp-19-565-2019, 2019
Short summary
Cited articles  
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Brinkman, G., Vance, G., Hannigan, M. P., and Milford, J. B.: Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data, Environ. Sci. Technol., 40, 1892–1901, 2006. 
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013. 
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C., Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS cooking Organic Aerosol at a rural site, Environ. Sci. Technol., 49, 13964–13972, 2015. 
Publications Copernicus
Download
Short summary
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the organic aerosol (OA) sources accurately is tested in this modeling study. The estimated uncertainty of the contribution of fresh biomass burning is less than 30 % and of the other primary sources is less than 40 %, when these sources contribute more than 20 % to the OA. Τhe first oxygenated OA factor includes mainly highly aged OA, while the second oxygenated OA factor contains fresher secondary OA.
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the...
Citation