Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-9699-2019
https://doi.org/10.5194/acp-19-9699-2019
Research article
 | 
01 Aug 2019
Research article |  | 01 Aug 2019

Photochemical impacts of haze pollution in an urban environment

Michael Hollaway, Oliver Wild, Ting Yang, Yele Sun, Weiqi Xu, Conghui Xie, Lisa Whalley, Eloise Slater, Dwayne Heard, and Dantong Liu

Related authors

Contrasting chemical environments in summertime for atmospheric ozone across major Chinese industrial regions: the effectiveness of emission control strategies
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Michael Hollaway, and Fiona M. O’Connor
Atmos. Chem. Phys., 21, 10689–10706, https://doi.org/10.5194/acp-21-10689-2021,https://doi.org/10.5194/acp-21-10689-2021, 2021
Short summary
Surface–atmosphere fluxes of volatile organic compounds in Beijing
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020,https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Measurements of traffic-dominated pollutant emissions in a Chinese megacity
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020,https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Street-scale air quality modelling for Beijing during a winter 2016 measurement campaign
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020,https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data
Mary C. Ockenden, Wlodek Tych, Keith J. Beven, Adrian L. Collins, Robert Evans, Peter D. Falloon, Kirsty J. Forber, Kevin M. Hiscock, Michael J. Hollaway, Ron Kahana, Christopher J. A. Macleod, Martha L. Villamizar, Catherine Wearing, Paul J. A. Withers, Jian G. Zhou, Clare McW. H. Benskin, Sean Burke, Richard J. Cooper, Jim E. Freer, and Philip M. Haygarth
Hydrol. Earth Syst. Sci., 21, 6425–6444, https://doi.org/10.5194/hess-21-6425-2017,https://doi.org/10.5194/hess-21-6425-2017, 2017
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Radiative impact of improved global parameterisations of oceanic dry deposition of ozone and lightning-generated NOx
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022,https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Measurements and modeling of airborne plutonium in Subarctic Finland between 1965 and 2011
Susanna Salminen-Paatero, Julius Vira, and Jussi Paatero
Atmos. Chem. Phys., 20, 5759–5769, https://doi.org/10.5194/acp-20-5759-2020,https://doi.org/10.5194/acp-20-5759-2020, 2020
Short summary
Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms
Fabien Paulot, David Paynter, Paul Ginoux, Vaishali Naik, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018,https://doi.org/10.5194/acp-18-13265-2018, 2018
Short summary
The role of HFCs in mitigating 21st century climate change
Y. Xu, D. Zaelke, G. J. M. Velders, and V. Ramanathan
Atmos. Chem. Phys., 13, 6083–6089, https://doi.org/10.5194/acp-13-6083-2013,https://doi.org/10.5194/acp-13-6083-2013, 2013
Reducing CO2 from shipping – do non-CO2 effects matter?
M. S. Eide, S. B. Dalsøren, Ø. Endresen, B. Samset, G. Myhre, J. Fuglestvedt, and T. Berntsen
Atmos. Chem. Phys., 13, 4183–4201, https://doi.org/10.5194/acp-13-4183-2013,https://doi.org/10.5194/acp-13-4183-2013, 2013

Cited articles

Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296, https://doi.org/10.1023/A:1014980619462, 2002. a
Bian, H., Prather, M. J., and Takemura, T.: Tropospheric aerosol impacts on trace gas budgets through photolysis, J. Geophys. Res.-Atmos., 108, 4242, https://doi.org/10.1029/2002JD002743, 2003. a
CAMS: CAMS Reanalysis data documentation, Copernicus Atmosphere Modelling Service (CAMS), available at: https://confluence.ecmwf.int/display/CKB/CAMS+Reanalysis+data+documentation, last access: 16 August 2018. a
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008. a
Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X.: Aircraft study of Mountain Chimney Effect of Beijing, China, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD010610, 2009. a, b
Download
Short summary
This study, for the first time, uses combinations of aerosol and lidar data to drive an offline photolysis scheme. Absorbing species are shown to have the greatest impact on photolysis rate constants in the winter and scattering aerosol are shown to dominate responses in the summer. During haze episodes, aerosols are shown to produce a greater impact than cloud cover. The findings demonstrate the potential photochemical impacts of haze pollution in a highly polluted urban environment.
Altmetrics
Final-revised paper
Preprint