Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 14
Atmos. Chem. Phys., 19, 9613–9640, 2019
https://doi.org/10.5194/acp-19-9613-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 9613–9640, 2019
https://doi.org/10.5194/acp-19-9613-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 31 Jul 2019

Research article | 31 Jul 2019

A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol

Kelvin H. Bates and Daniel J. Jacob

Data sets

Isoprene Oxidation Model K. H. Bates and P. O. Wennberg https://doi.org/10.22002/d1.247

Publications Copernicus
Download
Short summary
Isoprene is a highly reactive chemical released to the atmosphere by plants. Its gas-phase reactions and interactions with chemicals released by human activity have far-reaching atmospheric consequences, contributing to ozone and particulate pollution and prolonging the lifetime of methane, a potent greenhouse gas. We use global simulations with a new isoprene reaction scheme to quantify those effects and to show how recently discovered aspects of isoprene chemistry play out on a global scale.
Isoprene is a highly reactive chemical released to the atmosphere by plants. Its gas-phase...
Citation