Articles | Volume 19, issue 14
https://doi.org/10.5194/acp-19-9485-2019
https://doi.org/10.5194/acp-19-9485-2019
Research article
 | 
26 Jul 2019
Research article |  | 26 Jul 2019

Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter

Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter

Related authors

A fully coupled solid particle microphysics scheme for stratospheric aerosol injections within the aerosol-chemistry-climate-model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryehe Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
EGUsphere, https://doi.org/10.5194/egusphere-2024-444,https://doi.org/10.5194/egusphere-2024-444, 2024
Short summary
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024,https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Towards the definition of a solar forcing dataset for CMIP7
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024,https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
A multi-scenario Lagrangian trajectory analysis to identify source regions of the Asian tropopause aerosol layer on the Indian subcontinent in August 2016
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024,https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Paul J. Crutzen – a pioneer in Earth system science and a founding member of the journal Atmospheric Chemistry and Physics
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023,https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024,https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
Opinion: Stratospheric ozone – depletion, recovery and new challenges
Martyn P. Chipperfield and Slimane Bekki
Atmos. Chem. Phys., 24, 2783–2802, https://doi.org/10.5194/acp-24-2783-2024,https://doi.org/10.5194/acp-24-2783-2024, 2024
Short summary
Quantum yields of CHDO above 300 nm
Ernst-Peter Röth and Luc Vereecken
Atmos. Chem. Phys., 24, 2625–2638, https://doi.org/10.5194/acp-24-2625-2024,https://doi.org/10.5194/acp-24-2625-2024, 2024
Short summary
Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions
Johannes Pletzer and Volker Grewe
Atmos. Chem. Phys., 24, 1743–1775, https://doi.org/10.5194/acp-24-1743-2024,https://doi.org/10.5194/acp-24-1743-2024, 2024
Short summary
Analysis of a newly homogenised ozonesonde dataset from Lauder, New Zealand
Guang Zeng, Richard Querel, Hisako Shiona, Deniz Poyraz, Roeland Van Malderen, Alex Geddes, Penny Smale, Dan Smale, John Robinson, and Olaf Morgenstern
EGUsphere, https://doi.org/10.5194/egusphere-2023-2534,https://doi.org/10.5194/egusphere-2023-2534, 2023
Short summary

Cited articles

Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A., Päivärinta, S. M., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and van de Kamp, M.: Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons, J. Geophys. Res.-Atmos., 123, 607–622, https://doi.org/10.1002/2017JD027605, 2018. 
Arsenovic, P.: SOCOL3-MPIOM model output, Mendeley Data, v1, https://doi.org/10.17632/kgzwjgf4bk.1, 2019. 
Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J. M., Mursula, K., Tummon, F., and Peter, T.: The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phy., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008, 2016. 
Asikainen, T. and Ruopsa, M.: Solar wind drivers of energetic electron precipitation, J. Geophys. Res.-Space, 121, 2209–2225, https://doi.org/10.1029/2002JA009458, 2016. 
Baker, D. N., Barth, C. A., Mankoff, K. E., Kanekal, S. G., Bailey, S. M., Mason, G. M., and Mazur, J. E.: Relationships between precipitating auroral zone electrons and lower thermospheric nitric oxide densities: 1998–2000, J. Geophys. Res., 106, 24465–24480, https://doi.org/10.1029/2001JA000078, 2001. 
Download
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Altmetrics
Final-revised paper
Preprint