Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 14
Atmos. Chem. Phys., 19, 9371–9383, 2019
https://doi.org/10.5194/acp-19-9371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 9371–9383, 2019
https://doi.org/10.5194/acp-19-9371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Jul 2019

Research article | 22 Jul 2019

Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites

Maximilian Reuter et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Maximilian Reuter on behalf of the Authors (29 May 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (09 Jun 2019) by Michel Van Roozendael
RR by Anonymous Referee #2 (17 Jun 2019)
ED: Publish subject to minor revisions (review by editor) (18 Jun 2019) by Michel Van Roozendael
AR by Anna Wenzel on behalf of the Authors (20 Jun 2019)  Author's response
ED: Publish as is (01 Jul 2019) by Michel Van Roozendael
Publications Copernicus
Download
Short summary
The quantification of anthropogenic emissions with current CO2 satellite sensors is difficult, but NO2 is co-emitted, making it a suitable tracer of recently emitted CO2. We analyze enhancements of CO2 and NO2 observed by OCO-2 and S5P and estimate the CO2 plume cross-sectional fluxes that we compare with emission databases. Our results demonstrate the usefulness of simultaneous satellite observations of CO2 and NO2 as envisaged for the European Copernicus anthropogenic CO2 monitoring mission
The quantification of anthropogenic emissions with current CO2 satellite sensors is difficult,...
Citation