Supplement of Atmos. Chem. Phys., 19, 8967–8977, 2019
https://doi.org/10.5194/acp-19-8967-2019-supplement
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Trends in N_2O and SF_6 mole fractions in archived air samples from Cape Meares, Oregon (USA), 1978–1996

Terry C. Rolfe and Andrew L. Rice

Correspondence to: Terry C. Rolfe (trolfe@pdx.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. Mole fraction difference from expected plots for N₂O (a) and SF₆ (b) detector response calibration measurements. Solid black lines are 3rd-degree polynomials fit to the whole data range. For N₂O, 1st-degree polynomial fit (red-dashed line) is only fit to data with mole fractions expected to be greater than 295 ppb. For SF₆, 1st-degree polynomial fit spans the entire data range.

Figure S2. 3-year LOWESS regressions of measurements of mole fraction versus date of collection, N₂O (a) and SF₆ (b). Station codes: CMO = Cape Meares, Oregon, USA, NWR = Niwot Ridge, Colorado, USA, MHD = Mace Head, Ireland, THD = Trinidad Head, California, USA, CGO = Cape Grim, Tasmania, ALT = Alert, Canada. N₂O data sources:

N₂O data collected from World Data Center for Greenhouse Gases (WDCGG) https://gaw.kishou.go.jp/. SF₆ data is digitized from plots in Rigby et al. 2010 and Levin et al. 2010.