Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8831–8843, 2019
https://doi.org/10.5194/acp-19-8831-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 8831–8843, 2019
https://doi.org/10.5194/acp-19-8831-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Jul 2019

Research article | 11 Jul 2019

High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets

Daoyuan Yang et al.

Related authors

Joint measurements of PM2. 5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments
K. Max Zhang, George Allen, Bo Yang, Geng Chen, Jiajun Gu, James Schwab, Dirk Felton, and Oliver Rattigan
Atmos. Chem. Phys., 17, 11441–11452, https://doi.org/10.5194/acp-17-11441-2017,https://doi.org/10.5194/acp-17-11441-2017, 2017
Short summary
High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city
Shaojun Zhang, Ye Wu, Ruikun Huang, Jiandong Wang, Han Yan, Yali Zheng, and Jiming Hao
Atmos. Chem. Phys., 16, 9965–9981, https://doi.org/10.5194/acp-16-9965-2016,https://doi.org/10.5194/acp-16-9965-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluation of the CAMS global atmospheric trace gas reanalysis 2003–2016 using aircraft campaign observations
Yuting Wang, Yong-Feng Ma, Henk Eskes, Antje Inness, Johannes Flemming, and Guy P. Brasseur
Atmos. Chem. Phys., 20, 4493–4521, https://doi.org/10.5194/acp-20-4493-2020,https://doi.org/10.5194/acp-20-4493-2020, 2020
Short summary
Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China
Yu Zhao, Mengchen Yuan, Xin Huang, Feng Chen, and Jie Zhang
Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020,https://doi.org/10.5194/acp-20-4275-2020, 2020
Short summary
Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity
Oliver Wild, Apostolos Voulgarakis, Fiona O'Connor, Jean-François Lamarque, Edmund M. Ryan, and Lindsay Lee
Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020,https://doi.org/10.5194/acp-20-4047-2020, 2020
Short summary
Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US
Rebecca H. Schwantes, Louisa K. Emmons, John J. Orlando, Mary C. Barth, Geoffrey S. Tyndall, Samuel R. Hall, Kirk Ullmann, Jason M. St. Clair, Donald R. Blake, Armin Wisthaler, and Thao Paul V. Bui
Atmos. Chem. Phys., 20, 3739–3776, https://doi.org/10.5194/acp-20-3739-2020,https://doi.org/10.5194/acp-20-3739-2020, 2020
Short summary
Evaluating China's anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020,https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary

Cited articles

Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., Emberson, L., Franco, V., Klimont, Z., and Heyes, C.: Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545, 467–471, https://doi.org/10.1038/nature22086, 2017. 
Barth, M. J., Todd, M., and Shaheen, S: Intelligent Transportation Technology Elements and Operational Methodologies for Shared-Use Vehicle Systems, J. Transport. Res. Board, 1841, 99–108, 2003. 
Beijing EPB (Beijing Environmental Protection Bureau): The daily average PM2.5 concentrations decreased by 30 % during the APEC Summit, available at: http://politics.people.com.cn/n/2014/1114/c1001-26019842.html (last access: 30 June 2019), 2014 (in Chinese). 
Beijing MEEB (Beijing Municipal Ecological Environment Bureau): Beijing Environmental Statement 2017, Beijing Municipal Ecological Environment Bureau, Beijing, P. R. China, available at: http://www.bjepb.gov.cn/bjhrb/xxgk/ywdt/hjzlzk/hjzkgb65/index.html (last access: 30 June 2019), 2018a (in Chinese). 
Beijing MEEB (Beijing Municipal Ecological Environment Bureau): Beijing has released the newest source apportionment results of ambient PM2.5 concentrations, available at: http://www.xinhuanet.com/politics/2018-05/15/c_1122832062.htm (last access: 30 June 2019), 2018b (in Chinese). 
Publications Copernicus
Download
Short summary
Our work developed a high-resolution emission inventory (EMBEV-Link) with extensive traffic data covering the entire city of Beijing, which mapped the heterogeneity of road emissions associated with traffic dynamics. Nonlocal trucks accounted for substantial emissions (e.g., ~ 30 % of NOx), though they are missing in previous inventories. EMBEV-Link can support fine-grained dispersion modeling (e.g., 1 m × 1 m at hotspots) and mitigate the uncertainty in top-down emission mapping.
Our work developed a high-resolution emission inventory (EMBEV-Link) with extensive traffic data...
Citation