Articles | Volume 19, issue 13
https://doi.org/10.5194/acp-19-8721-2019
https://doi.org/10.5194/acp-19-8721-2019
Research article
 | 
10 Jul 2019
Research article |  | 10 Jul 2019

Is water vapor a key player of the wintertime haze in North China Plain?

Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Guohui Li on behalf of the Authors (26 May 2019)  Author's response    Manuscript
ED: Publish as is (06 Jun 2019) by Renyi Zhang
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Altmetrics
Final-revised paper
Preprint