Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5571–5587, 2019
https://doi.org/10.5194/acp-19-5571-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 5571–5587, 2019
https://doi.org/10.5194/acp-19-5571-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Apr 2019

Research article | 29 Apr 2019

Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations

Katerina S. Karadima et al.

Related authors

Aerosol light absorption and the role of extremely low volatility organic compounds
Antonios Tasoglou, Evangelos Louvaris, Kalliopi Florou, Aikaterini Liangou, Eleni Karnezi, Christos Kaltsonoudis, Ningxin Wang, and Spyros N. Pandis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1191,https://doi.org/10.5194/acp-2019-1191, 2020
Manuscript under review for ACP
Short summary
Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability
Athanasios Nenes, Spyros N. Pandis, Rodney J. Weber, and Armistead Russell
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-840,https://doi.org/10.5194/acp-2019-840, 2019
Revised manuscript accepted for ACP
Short summary
Summertime aerosol volatility measurements in Beijing, China
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019,https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
A portable dual-smog-chamber system for atmospheric aerosol field studies
Christos Kaltsonoudis, Spiro D. Jorga, Evangelos Louvaris, Kalliopi Florou, and Spyros N. Pandis
Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019,https://doi.org/10.5194/amt-12-2733-2019, 2019
Short summary
Simulation of the chemical evolution of biomass burning organic aerosol
Georgia N. Theodoritsi and Spyros N. Pandis
Atmos. Chem. Phys., 19, 5403–5415, https://doi.org/10.5194/acp-19-5403-2019,https://doi.org/10.5194/acp-19-5403-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) – Part 2: aerosol radiative effects and aerosol feedbacks
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020,https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Six global biomass burning emission datasets: intercomparison and application in one global aerosol model
Xiaohua Pan, Charles Ichoku, Mian Chin, Huisheng Bian, Anton Darmenov, Peter Colarco, Luke Ellison, Tom Kucsera, Arlindo da Silva, Jun Wang, Tomohiro Oda, and Ge Cui
Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020,https://doi.org/10.5194/acp-20-969-2020, 2020
Short summary
Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability
Yufei Zou, Yuhang Wang, Yun Qian, Hanqin Tian, Jia Yang, and Ernesto Alvarado
Atmos. Chem. Phys., 20, 995–1020, https://doi.org/10.5194/acp-20-995-2020,https://doi.org/10.5194/acp-20-995-2020, 2020
Short summary
Dust Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM): comparison with measurements and model simulations
Adeyemi A. Adebiyi, Jasper F. Kok, Yang Wang, Akinori Ito, David A. Ridley, Pierre Nabat, and Chun Zhao
Atmos. Chem. Phys., 20, 829–863, https://doi.org/10.5194/acp-20-829-2020,https://doi.org/10.5194/acp-20-829-2020, 2020
Short summary
Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0)
Bing Pu, Paul Ginoux, Huan Guo, N. Christina Hsu, John Kimball, Beatrice Marticorena, Sergey Malyshev, Vaishali Naik, Norman T. O'Neill, Carlos Pérez García-Pando, Juliette Paireau, Joseph M. Prospero, Elena Shevliakova, and Ming Zhao
Atmos. Chem. Phys., 20, 55–81, https://doi.org/10.5194/acp-20-55-2020,https://doi.org/10.5194/acp-20-55-2020, 2020
Short summary

Cited articles

Allen, M. P. and Tildesley, D. J.: Computer Simulation of Liquids, Oxford University Press, New York, 1991. 
Altaf, M. B. and Freedman, M. A.: Effect of Drying Rate on Aerosol Particle Morphology, J. Phys. Chem. Lett., 8, 3613–3618, 2017. 
Bahadur, R., Russell, L. M. and Prather, K.: Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements, Aerosol Sci. Technol., 44, 551–562, 2010. 
Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P.: The missing term in effective pair potentials, J. Phys. Chem., 91, 6269–6271, 1987. 
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011. 
Publications Copernicus
Download
Short summary
We explore the morphologies of multicomponent nanoparticles through atomistic molecular dynamics simulations under atmospherically relevant conditions. Phase separation is predicted for almost all simulated nanoparticles either between organics and inorganics or between hydrophobic and hydrophilic constituents. Three main particle types were identified: organic islands at the surface, inorganic core-organic shell morphologies and complex structures with hydrophobic and hydrophilic domains.
We explore the morphologies of multicomponent nanoparticles through atomistic molecular dynamics...
Citation