Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5571–5587, 2019
https://doi.org/10.5194/acp-19-5571-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 5571–5587, 2019
https://doi.org/10.5194/acp-19-5571-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Apr 2019

Research article | 29 Apr 2019

Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations

Katerina S. Karadima et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Spyros Pandis on behalf of the Authors (25 Mar 2019)  Author's response    Manuscript
ED: Publish as is (26 Mar 2019) by Daniel Knopf
Publications Copernicus
Download
Short summary
We explore the morphologies of multicomponent nanoparticles through atomistic molecular dynamics simulations under atmospherically relevant conditions. Phase separation is predicted for almost all simulated nanoparticles either between organics and inorganics or between hydrophobic and hydrophilic constituents. Three main particle types were identified: organic islands at the surface, inorganic core-organic shell morphologies and complex structures with hydrophobic and hydrophilic domains.
We explore the morphologies of multicomponent nanoparticles through atomistic molecular dynamics...
Citation