Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5387–5401, 2019
https://doi.org/10.5194/acp-19-5387-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 5387–5401, 2019
https://doi.org/10.5194/acp-19-5387-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Apr 2019

Research article | 24 Apr 2019

Mixed-phase orographic cloud microphysics during StormVEx and IFRACS

Douglas H. Lowenthal et al.

Related authors

Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory
Nathan F. Taylor, Don R. Collins, Douglas H. Lowenthal, Ian B. McCubbin, A. Gannet Hallar, Vera Samburova, Barbara Zielinska, Naresh Kumar, and Lynn R. Mazzoleni
Atmos. Chem. Phys., 17, 2555–2571, https://doi.org/10.5194/acp-17-2555-2017,https://doi.org/10.5194/acp-17-2555-2017, 2017
Short summary
Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol
L.-W. A. Chen, J. C. Chow, X. L. Wang, J. A. Robles, B. J. Sumlin, D. H. Lowenthal, R. Zimmermann, and J. G. Watson
Atmos. Meas. Tech., 8, 451–461, https://doi.org/10.5194/amt-8-451-2015,https://doi.org/10.5194/amt-8-451-2015, 2015

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud
Adam Majewski and Jeffrey R. French
Atmos. Chem. Phys., 20, 5035–5054, https://doi.org/10.5194/acp-20-5035-2020,https://doi.org/10.5194/acp-20-5035-2020, 2020
Short summary
Stratocumulus cloud clearings: statistics from satellites, reanalysis models, and airborne measurements
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020,https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020,https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer
Steven J. Abel, Paul A. Barrett, Paquita Zuidema, Jianhao Zhang, Matt Christensen, Fanny Peers, Jonathan W. Taylor, Ian Crawford, Keith N. Bower, and Michael Flynn
Atmos. Chem. Phys., 20, 4059–4084, https://doi.org/10.5194/acp-20-4059-2020,https://doi.org/10.5194/acp-20-4059-2020, 2020
Short summary
Small ice particles at slightly supercooled temperatures in tropical maritime convection
Gary Lloyd, Thomas Choularton, Keith Bower, Jonathan Crosier, Martin Gallagher, Michael Flynn, James Dorsey, Dantong Liu, Jonathan W. Taylor, Oliver Schlenczek, Jacob Fugal, Stephan Borrmann, Richard Cotton, Paul Field, and Alan Blyth
Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020,https://doi.org/10.5194/acp-20-3895-2020, 2020
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Bacon, N. J., Swanson, B. D., Baker, M. B., and Davis, E. J.: Breakup of levitated frost particles. J. Geophys. Res., 103, 13763–13775, https://doi.org/10.1029/98JD01162, 1998. 
Baumgardner, D. and Korolev, A.: Airspeed corrections for optical array probe sample volumes, J. Atmos. Ocean. Tech., 14, 1224–1229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2, 1997. 
Beals, M. J., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale, Science, 350, 87–89, https://doi.org/10.1126/science.aab0751, 2015. 
Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, 2018. 
Publications Copernicus
Download
Short summary
Snow and liquid cloud particles were measured during the StormVEx and IFRACS programs at Storm Peak Lab to better understand snow formation in wintertime mountain clouds. We found significant interactions between the ice and liquid phases of the cloud. A relationship between large droplet and small ice crystal concentrations suggested snow formation by droplet freezing. Blowing snow can bias surface measurements, but its effect was ambiguous, calling for further work on this issue.
Snow and liquid cloud particles were measured during the StormVEx and IFRACS programs at Storm...
Citation