Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 19, issue 7
Atmos. Chem. Phys., 19, 4615–4635, 2019
https://doi.org/10.5194/acp-19-4615-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 4615–4635, 2019
https://doi.org/10.5194/acp-19-4615-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Apr 2019

Research article | 08 Apr 2019

From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability

Jon Ander Arrillaga et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jon Ander Arrillaga on behalf of the Authors (21 Mar 2019)  Author's response    Manuscript
ED: Publish as is (22 Mar 2019) by Stefano Galmarini
Publications Copernicus
Download
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing...
Citation