Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 4093–4104, 2019
https://doi.org/10.5194/acp-19-4093-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 4093–4104, 2019
https://doi.org/10.5194/acp-19-4093-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Apr 2019

Research article | 02 Apr 2019

The distribution of sea-salt aerosol in the global troposphere

Daniel M. Murphy et al.

Related authors

A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry
Karl D. Froyd, Daniel M. Murphy, Charles A. Brock, Pedro Campuzano-Jost, Jack E. Dibb, Jose-Luis Jimenez, Agnieszka Kupc, Ann M. Middlebrook, Gregory P. Schill, Kenneth L. Thornhill, Christina J. Williamson, James C. Wilson, and Luke D. Ziemba
Atmos. Meas. Tech., 12, 6209–6239, https://doi.org/10.5194/amt-12-6209-2019,https://doi.org/10.5194/amt-12-6209-2019, 2019
Short summary
Model-measurement consistency and limits of bioaerosol abundance over the continental United States
Maria A. Zawadowicz, Karl D. Froyd, Anne E. Perring, Daniel M. Murphy, Dominick V. Spracklen, Colette L. Heald, Peter R. Buseck, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 13859–13870, https://doi.org/10.5194/acp-19-13859-2019,https://doi.org/10.5194/acp-19-13859-2019, 2019
Short summary
Observationally constrained analysis of sea salt aerosol in the marine atmosphere
Huisheng Bian, Karl Froyd, Daniel M. Murphy, Jack Dibb, Anton Darmenov, Mian Chin, Peter R. Colarco, Arlindo da Silva, Tom L. Kucsera, Gregory Schill, Hongbin Yu, Paul Bui, Maximilian Dollner, Bernadett Weinzierl, and Alexander Smirnov
Atmos. Chem. Phys., 19, 10773–10785, https://doi.org/10.5194/acp-19-10773-2019,https://doi.org/10.5194/acp-19-10773-2019, 2019
Short summary
Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products
Charles A. Brock, Christina Williamson, Agnieszka Kupc, Karl D. Froyd, Frank Erdesz, Nicholas Wagner, Matthews Richardson, Joshua P. Schwarz, Ru-Shan Gao, Joseph M. Katich, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, Bernadett Weinzierl, Maximilian Dollner, ThaoPaul Bui, and Daniel M. Murphy
Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019,https://doi.org/10.5194/amt-12-3081-2019, 2019
Short summary
Investigating biomass burning aerosol morphology using a laser imaging nephelometer
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018,https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions
Stefano Decesari, Marco Paglione, Matteo Rinaldi, Manuel Dall'Osto, Rafel Simó, Nicola Zanca, Francesca Volpi, Maria Cristina Facchini, Thorsten Hoffmann, Sven Götz, Christopher Johannes Kampf, Colin O'Dowd, Darius Ceburnis, Jurgita Ovadnevaite, and Emilio Tagliavini
Atmos. Chem. Phys., 20, 4193–4207, https://doi.org/10.5194/acp-20-4193-2020,https://doi.org/10.5194/acp-20-4193-2020, 2020
Short summary
Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry
Pengfei Liu, Can Ye, Chaoyang Xue, Chenglong Zhang, Yujing Mu, and Xu Sun
Atmos. Chem. Phys., 20, 4153–4165, https://doi.org/10.5194/acp-20-4153-2020,https://doi.org/10.5194/acp-20-4153-2020, 2020
Short summary
Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China
Yu-Chi Lin, Yan-Lin Zhang, Mei-Yi Fan, and Mengying Bao
Atmos. Chem. Phys., 20, 3999–4011, https://doi.org/10.5194/acp-20-3999-2020,https://doi.org/10.5194/acp-20-3999-2020, 2020
Short summary
Summertime and wintertime atmospheric processes of secondary aerosol in Beijing
Jing Duan, Ru-Jin Huang, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Chunshui Lin, Haiyan Ni, Meng Wang, Jurgita Ovadnevaite, Darius Ceburnis, Chunying Chen, Douglas R. Worsnop, Thorsten Hoffmann, Colin O'Dowd, and Junji Cao
Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020,https://doi.org/10.5194/acp-20-3793-2020, 2020
Short summary
Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses
Wei Xu, Jurgita Ovadnevaite, Kirsten N. Fossum, Chunshui Lin, Ru-Jin Huang, Colin O'Dowd, and Darius Ceburnis
Atmos. Chem. Phys., 20, 3777–3791, https://doi.org/10.5194/acp-20-3777-2020,https://doi.org/10.5194/acp-20-3777-2020, 2020
Short summary

Cited articles

Alvarez-Aviles, L., Simpson, W. R., Douglas, T. A., Sturm, M., Perovich, D., and Domine, F.: Frost flower chemical composition during growth and its implications for aerosol production and bromine activation, J. Geophys. Res., 113, D21304, https://doi.org/10.1029/2008JD010277, 2008. 
ATom: Measurements and modeling results from the NASA Atmospheric Tomography Mission, https://doi.org/10.5067/Aircraft/ATom/TraceGas_Aerosol_Global_Distribution, 2017. 
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. 
Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., Blake, D., Chu, D. A., da Silva, A., Darmenov, A. S., Diskin, G., Fuelberg, H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.: Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707–4721, https://doi.org/10.5194/acp-13-4707-2013, 2013. 
Bian, H., Froyd, K., Murphy, D. M., Dibb, J., Chin, M., Colarco, P. R., Darmenov, A., da Silva, A., Kucsera, T. L., Schill, G., Yu, H., Bui, P., Dollner, M., Weinzierl, B., and Smirnov, A.: Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-18, in review, 2019. 
Publications Copernicus
Download
Short summary
We present the first data on the concentration of sea-salt aerosol throughout most of the depth of the troposphere and a wide range of latitudes. Sea-salt concentrations in the upper troposphere are very small. This puts stringent limits on how sea-salt aerosol affects halogen and nitric acid chemistry there. With a widely distributed source, sea-salt aerosol provides an excellent test of wet scavenging and vertical transport of aerosols in chemical transport models.
We present the first data on the concentration of sea-salt aerosol throughout most of the depth...
Citation