Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 5
Atmos. Chem. Phys., 19, 2881–2898, 2019
https://doi.org/10.5194/acp-19-2881-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 2881–2898, 2019
https://doi.org/10.5194/acp-19-2881-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Mar 2019

Research article | 07 Mar 2019

Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model

Ksenia Aleksankina et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (19 Dec 2018)  Author's response
ED: Referee Nomination & Report Request started (19 Dec 2018) by Robert Harley
RR by Anonymous Referee #1 (04 Jan 2019)
ED: Publish subject to minor revisions (review by editor) (17 Jan 2019) by Robert Harley
AR by Ksenia Aleksankina on behalf of the Authors (06 Feb 2019)  Author's response    Manuscript
ED: Publish as is (08 Feb 2019) by Robert Harley
Publications Copernicus
Download
Short summary
Atmospheric chemistry transport models are widely used to underpin policies to mitigate the detrimental effects of air pollution on human health and ecosystems. Understanding the level of confidence in model predictions is thus vital. We present a comprehensive approach for uncertainty assessment and global variance-based sensitivity analysis to propagate uncertainty from model input data and identify the extent to which uncertainty in different emissions drives the model output uncertainty.
Atmospheric chemistry transport models are widely used to underpin policies to mitigate the...
Citation