Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 19, issue 3
Atmos. Chem. Phys., 19, 1835-1851, 2019
https://doi.org/10.5194/acp-19-1835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Layered phenomena in the mesopause region (ACP/AMT inter-journal...

Atmos. Chem. Phys., 19, 1835-1851, 2019
https://doi.org/10.5194/acp-19-1835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Feb 2019

Research article | 12 Feb 2019

Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region

Tilo Fytterer1, Christian von Savigny2, Martin Mlynczak3, and Miriam Sinnhuber1 Tilo Fytterer et al.
  • 1Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
  • 2Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
  • 3Langley Research Center, NASA, Hampton, Virginia 23681-2199, USA

Abstract. Based on the zero-dimensional box model Module Efficiently Calculating the Chemistry of the Atmosphere/Chemistry As A Box model Application (CAABA/MECCA-3.72f), an OH airglow model was developed to derive night-time number densities of atomic oxygen ([O(3P)]) and atomic hydrogen ([H]) in the mesopause region ( ∼ 75–100 km). The profiles of [O(3P)] and [H] were calculated from OH airglow emissions measured at 2.0 µm by the Sounding of the Atmosphere using Broadband Emission Radiography (SABER) instrument on board NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The two target species were used to initialize the OH airglow model, which was empirically adjusted to fit four different OH airglow emissions observed by the satellite/instrument configuration TIMED/SABER at 2.0 µm and at 1.6 µm as well as measurements by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument on board the Environmental Satellite (ENVISAT) of the transitions OH(6-2) and OH(3-1). Comparisons between the best-fit model obtained here and the satellite measurements suggest that deactivation of vibrationally excited OH(ν) via OH(ν ≥ 7)+O2 might favour relaxation to OH(ν′ ≤ 5)+O2 by multi-quantum quenching. It is further indicated that the deactivation pathway to OH(ν′ = ν − 5)+O2 dominates. The results also provide general support of the recently proposed mechanism OH(ν)+O(3P) → OH(0 ≤ ν′ ≤ ν − 5)+O(1D) but suggest slower rates of OH(ν = 8,7,6,5)+O(3P), partly disagreeing with laboratory experiments. Additionally, deactivation to OH(ν′ = ν − 5)+O(1D) might be preferred. The profiles of [O(3P)] and [H] derived here are plausible between 80 and 95 km but should be regarded as an upper limit. The values of [O(3P)] obtained in this study agree with the corresponding TIMED/SABER values between 80 and 85 km but are larger from 85 to 95 km due to different relaxation assumptions of OH(ν)+O(3P). The [H] profile found here is generally larger than TIMED/SABER [H] by about 50 % from 80 to 95 km, which is primarily attributed to our faster OH(ν = 8)+O2 rate.

Publications Copernicus
Download
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the best-fit model and the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from...
Citation