Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 3
Atmos. Chem. Phys., 19, 1785–1799, 2019
https://doi.org/10.5194/acp-19-1785-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 1785–1799, 2019
https://doi.org/10.5194/acp-19-1785-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Feb 2019

Research article | 08 Feb 2019

Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets

Keigo Matsuda and Ryo Onishi
Related authors  
Direct Lagrangian tracking simulation of droplet growth in vertically developing cloud
Yuichi Kunishima and Ryo Onishi
Atmos. Chem. Phys., 18, 16619–16630, https://doi.org/10.5194/acp-18-16619-2018,https://doi.org/10.5194/acp-18-16619-2018, 2018
Short summary
Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results
Masuo Nakano, Akiyoshi Wada, Masahiro Sawada, Hiromasa Yoshimura, Ryo Onishi, Shintaro Kawahara, Wataru Sasaki, Tomoe Nasuno, Munehiko Yamaguchi, Takeshi Iriguchi, Masato Sugi, and Yoshiaki Takeuchi
Geosci. Model Dev., 10, 1363–1381, https://doi.org/10.5194/gmd-10-1363-2017,https://doi.org/10.5194/gmd-10-1363-2017, 2017
Short summary
Reynolds-number dependence of turbulence enhancement on collision growth
Ryo Onishi and Axel Seifert
Atmos. Chem. Phys., 16, 12441–12455, https://doi.org/10.5194/acp-16-12441-2016,https://doi.org/10.5194/acp-16-12441-2016, 2016
Short summary
Turbulence effects on warm-rain formation in precipitating shallow convection revisited
Axel Seifert and Ryo Onishi
Atmos. Chem. Phys., 16, 12127–12141, https://doi.org/10.5194/acp-16-12127-2016,https://doi.org/10.5194/acp-16-12127-2016, 2016
Short summary
Related subject area  
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An emulator approach to stratocumulus susceptibility
Franziska Glassmeier, Fabian Hoffmann, Jill S. Johnson, Takanobu Yamaguchi, Ken S. Carslaw, and Graham Feingold
Atmos. Chem. Phys., 19, 10191–10203, https://doi.org/10.5194/acp-19-10191-2019,https://doi.org/10.5194/acp-19-10191-2019, 2019
Short summary
Response of Arctic mixed-phase clouds to aerosol perturbations under different surface forcings
Gesa K. Eirund, Anna Possner, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 9847–9864, https://doi.org/10.5194/acp-19-9847-2019,https://doi.org/10.5194/acp-19-9847-2019, 2019
Short summary
Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2
Remo Dietlicher, David Neubauer, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 9061–9080, https://doi.org/10.5194/acp-19-9061-2019,https://doi.org/10.5194/acp-19-9061-2019, 2019
Short summary
Arctic cloud annual cycle biases in climate models
Patrick C. Taylor, Robyn C. Boeke, Ying Li, and David W. J. Thompson
Atmos. Chem. Phys., 19, 8759–8782, https://doi.org/10.5194/acp-19-8759-2019,https://doi.org/10.5194/acp-19-8759-2019, 2019
Short summary
Contrail cirrus radiative forcing for future air traffic
Lisa Bock and Ulrike Burkhardt
Atmos. Chem. Phys., 19, 8163–8174, https://doi.org/10.5194/acp-19-8163-2019,https://doi.org/10.5194/acp-19-8163-2019, 2019
Short summary
Cited articles  
Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016, 2008a. a, b
Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation, New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015, 2008b. a
Balsley, B. and Gage, K.: The MST Radar Technique: Potential for Middle Atmospheric Studies, Pure Appl. Geophys., 118, 452–493, 1980. a
Bec, J., Homann, H., and Ray, S.: Gravity-Driven Enhancement of Heavy Particle Clustering in Turbulent Flow, Phys. Rev. Lett., 112, 184501, https://doi.org/10.1103/PhysRevLett.112.184501, 2014. a, b
Bohren, C. and Huffman, D.: Absorption and Scattering of Light by Small Particles, Wiley, 1983. a
Publications Copernicus
Download
Short summary
This paper presents a parameterization to predict the influence of microscale turbulent clustering of cloud droplets on the radar reflectivity factor, based on a direct numerical simulation (DNS) of turbulence. The proposed parameterization takes account of the turbulent clustering structure of droplets with arbitrary size distributions. This paper also discusses quantitative influences on realistic radar observations, applying the parameterization to high-resolution cloud-simulation data.
This paper presents a parameterization to predict the influence of microscale turbulent...
Citation