Research article
08 Feb 2019
Research article | 08 Feb 2019
Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets
Keigo Matsuda and Ryo Onishi
Related authors
Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results
Masuo Nakano, Akiyoshi Wada, Masahiro Sawada, Hiromasa Yoshimura, Ryo Onishi, Shintaro Kawahara, Wataru Sasaki, Tomoe Nasuno, Munehiko Yamaguchi, Takeshi Iriguchi, Masato Sugi, and Yoshiaki Takeuchi
Geosci. Model Dev., 10, 1363-1381, https://doi.org/10.5194/gmd-10-1363-2017,https://doi.org/10.5194/gmd-10-1363-2017, 2017
Short summary
Related subject area
Impact of humidity biases on light precipitation occurrence: observations versus simulations
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471-1490, https://doi.org/10.5194/acp-19-1471-2019,https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models
Zhibo Zhang, Hua Song, Po-Lun Ma, Vincent E. Larson, Minghuai Wang, Xiquan Dong, and Jianwu Wang
Atmos. Chem. Phys., 19, 1077-1096, https://doi.org/10.5194/acp-19-1077-2019,https://doi.org/10.5194/acp-19-1077-2019, 2019
An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010
Mark R. Theobald, Marta G. Vivanco, Wenche Aas, Camilla Andersson, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Mihaela Mircea, Maria-Teresa Pay, Svetlana Tsyro, Mario Adani, Robert Bergström, Bertrand Bessagnet, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Hilde Fagerli, Kathleen Mar, Noelia Otero, Valentin Raffort, Yelva Roustan, Martijn Schaap, Peter Wind, and Augustin Colette
Atmos. Chem. Phys., 19, 379-405, https://doi.org/10.5194/acp-19-379-2019,https://doi.org/10.5194/acp-19-379-2019, 2019
Short summary
The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
Amy Solomon, Gijs de Boer, Jessie M. Creamean, Allison McComiskey, Matthew D. Shupe, Maximilian Maahn, and Christopher Cox
Atmos. Chem. Phys., 18, 17047-17059, https://doi.org/10.5194/acp-18-17047-2018,https://doi.org/10.5194/acp-18-17047-2018, 2018
Short summary
The effect of secondary ice production parameterization on the simulation of a cold frontal rainband
Sylvia C. Sullivan, Christian Barthlott, Jonathan Crosier, Ilya Zhukov, Athanasios Nenes, and Corinna Hoose
Atmos. Chem. Phys., 18, 16461-16480, https://doi.org/10.5194/acp-18-16461-2018,https://doi.org/10.5194/acp-18-16461-2018, 2018
Short summary
Large simulated radiative effects of smoke in the south-east Atlantic
Hamish Gordon, Paul R. Field, Steven J. Abel, Mohit Dalvi, Daniel P. Grosvenor, Adrian A. Hill, Ben T. Johnson, Annette K. Miltenberger, Masaru Yoshioka, and Ken S. Carslaw
Atmos. Chem. Phys., 18, 15261-15289, https://doi.org/10.5194/acp-18-15261-2018,https://doi.org/10.5194/acp-18-15261-2018, 2018
Short summary
Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades
Seoung Soo Lee, Byung-Gon Kim, Zhanqing Li, Yong-Sang Choi, Chang-Hoon Jung, Junshik Um, Jungbin Mok, and Kyong-Hwan Seo
Atmos. Chem. Phys., 18, 12531-12550, https://doi.org/10.5194/acp-18-12531-2018,https://doi.org/10.5194/acp-18-12531-2018, 2018
A model intercomparison of CCN-limited tenuous clouds in the high Arctic
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041-11071, https://doi.org/10.5194/acp-18-11041-2018,https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133-10156, https://doi.org/10.5194/acp-18-10133-2018,https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models
Michael Keller, Nico Kröner, Oliver Fuhrer, Daniel Lüthi, Juerg Schmidli, Martin Stengel, Reto Stöckli, and Christoph Schär
Atmos. Chem. Phys., 18, 5253-5264, https://doi.org/10.5194/acp-18-5253-2018,https://doi.org/10.5194/acp-18-5253-2018, 2018
Short summary
Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations
Annette K. Miltenberger, Paul R. Field, Adrian A. Hill, Phil Rosenberg, Ben J. Shipway, Jonathan M. Wilkinson, Robert Scovell, and Alan M. Blyth
Atmos. Chem. Phys., 18, 3119-3145, https://doi.org/10.5194/acp-18-3119-2018,https://doi.org/10.5194/acp-18-3119-2018, 2018
Initiation of secondary ice production in clouds
Sylvia C. Sullivan, Corinna Hoose, Alexei Kiselev, Thomas Leisner, and Athanasios Nenes
Atmos. Chem. Phys., 18, 1593-1610, https://doi.org/10.5194/acp-18-1593-2018,https://doi.org/10.5194/acp-18-1593-2018, 2018
Short summary
Response to marine cloud brightening in a multi-model ensemble
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621-634, https://doi.org/10.5194/acp-18-621-2018,https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols
Seoung Soo Lee, Zhanqing Li, Yuwei Zhang, Hyelim Yoo, Seungbum Kim, Byung-Gon Kim, Yong-Sang Choi, Jungbin Mok, Junshik Um, Kyoung Ock Choi, and Danhong Dong
Atmos. Chem. Phys., 18, 13-29, https://doi.org/10.5194/acp-18-13-2018,https://doi.org/10.5194/acp-18-13-2018, 2018
Short summary
Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle
Marie Mazoyer, Christine Lac, Odile Thouron, Thierry Bergot, Valery Masson, and Luc Musson-Genon
Atmos. Chem. Phys., 17, 13017-13035, https://doi.org/10.5194/acp-17-13017-2017,https://doi.org/10.5194/acp-17-13017-2017, 2017
Short summary
Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects
Bethan White, Edward Gryspeerdt, Philip Stier, Hugh Morrison, Gregory Thompson, and Zak Kipling
Atmos. Chem. Phys., 17, 12145-12175, https://doi.org/10.5194/acp-17-12145-2017,https://doi.org/10.5194/acp-17-12145-2017, 2017
Short summary
How do changes in warm-phase microphysics affect deep convective clouds?
Qian Chen, Ilan Koren, Orit Altaratz, Reuven H. Heiblum, Guy Dagan, and Lital Pinto
Atmos. Chem. Phys., 17, 9585-9598, https://doi.org/10.5194/acp-17-9585-2017,https://doi.org/10.5194/acp-17-9585-2017, 2017
Cited articles
Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric
collision rate of sedimenting droplets. Part 2. Theory and parameterization,
New J. Phys., 10, 075016,
https://doi.org/10.1088/1367-2630/10/7/075016, 2008a.
a,
b
Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W.: Effects of turbulence on
the geometric collision rate of sedimenting droplets. Part 1. Results from
direct numerical simulation, New J. Phys., 10, 075015,
https://doi.org/10.1088/1367-2630/10/7/075015, 2008b.
a
Balsley, B. and Gage, K.: The MST Radar Technique: Potential for Middle
Atmospheric Studies, Pure Appl. Geophys., 118, 452–493, 1980. a
Bec, J., Homann, H., and Ray, S.: Gravity-Driven Enhancement of Heavy Particle
Clustering in Turbulent Flow, Phys. Rev. Lett., 112, 184501,
https://doi.org/10.1103/PhysRevLett.112.184501, 2014.
a,
b
Bringi, V., Chandrasekar, V., Balakrishnan, N., and Zrnić, D.: An examination
of propagation effects in rainfall on radar measurements at microwave frequencies,
J. Atmos. Ocean. Tech., 7, 829–840, 1990. a
Carey, L., Rutledge, S., Ahijevych, D., and Keenan, T.: Correcting Propagation
Effects in C-Band Polarimetric Radar Observations of Tropical Convection Using
Differential Propagation Phase, J. Atmos. Sci., 39, 1405–1433, 2000. a
Chun, J., Koch, D., Rani, S., Ahluwalia, A., and Collins, L.: Clustering of
aerosol particles in isotropic turbulence, J. Fluid Mech., 536, 219–251, 2005.
a,
b,
c,
d,
e,
f,
g,
h
Dombrovsky, L. and Zaichik, L.: An effect of turbulent clustering on scattering
of microwave radiation by small particles in the atmosphere, J. Quant. Spectrosc.
Ra., 111, 234–242, 2010. a
Erkelens, J., Venema, V., Russchenberg, H., and Ligthart, L.: Coherent Scattering
of Microwave by Particles: Evidence from Clouds and Smoke, J. Atmos. Sci.,
58, 1091–1102, 2001.
a,
b,
c,
d
Gossard, E. and Strauch, R.: Radar Observation of Clear Air and Clouds, in:
vol. 14 of Developments in Atmospheric Science, Elsevir, New York, 1983.
a,
b,
c,
d,
e
Goto, S. and Kida, S.: Passive scalar spectrum in isotropic turbulence:
Prediction by the Lagrangian direct-interaction approximation, Phys. Fluids,
11, 1936–1952, 1999.
a,
b
Grabowski, W. and Vaillancourt, P.: Comments on “Preferential Concentration
of Cloud Droplets by Turbulence: Effects on the Early Evolution of Cumulus Cloud
Droplet Spectra”, J. Atmos. Sci., 56, 1433–1436, 1999. a
Grant, H., Hughes, B., Vogel, W., and Moilliet, A.: The spectrum of temperature
fluctuations in turbulent flow, J. Fluid Mech., 34, 423–442, 1968. a
Hill, R.: Models of the scalar spectrum for turbulent advection, J. Fluid Mech.,
88, 541–562, 1978. a
Hirt, C. and Cook, J.: Calculating three-dimensional flow around structures,
J. Comput. Phys., 10, 324–340, 1972. a
Ireland, P., Bragg, A., and Collins, L.: The effect of Reynolds number on
inertial particle dynamics in isotropic turbulence. Part 2. Simulations with
gravitational effects, J. Fluid Mech., 796, 659–711, 2016.
a,
b
Knight, C. and Miller, L.: Early radar echoes from small, warm cumulus: Bragg
and hydrometeor scattering, J. Atmos. Sci., 55, 2974–2992, 1998.
a,
b,
c,
d
Kostinski, A. and Jameson, A.: On the spatial distribution of cloud particles,
J. Atmos. Sci., 57, 901–915, 2000.
a,
b
Lu, J., Nordslek, H., and Shaw, R.: Clustering of settling charged particles
in turbulence: theory and experiments, New J. Phys., 12, 123030,
https://doi.org/10.1088/1367-2630/12/12/123030, 2010.
a,
b,
c,
d
Matsuda, K., Onishi, R., Hirahara, M., Kurose, R., Takahashi, K., and Komori,
S.: Influence of microscale turbulent droplet clustering on radar cloud
observations, J. Atmos. Sci., 71, 3569–3582, 2014.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Matsuda, K., Onishi, R., and Takahashi, K.: Influence of gravitational settling
on turbulent droplet clustering and radar reflectivity factor, Flow Turb. Combust.,
98, 327–340, 2017.
a,
b
Maxey, M.: The gravitational settling of aerosol particles in homogeneous
turbulence and random flow fields, J. Fluid Mech., 174, 441–465, 1987. a
Moin, P., Squires, K., Cabot, W., and Lee, S.: A dynamic subgridscale model
for compressible turbulence and scalar transport, Phys. Fluids A, 3, 2746–2757, 1991. a
Morinishi, Y., Lundm, T., Vasilyev, O., and Moin, P.: Fully conservative higher
order finite difference schemes for incompressible flow, J. Comput. Phys.,
143, 90–124, 1998. a
Onishi, R. and Takahashi, K.: A Warm-Bin–Cold-Bulk Cloud Microphysical Model,
J. Atmos. Sci., 69, 1474–1497, 2012.
a,
b,
c,
d,
e
Onishi, R. and Vassilicos, J.: Collision Statistics of Inertial Particles in
Two-Dimensional Homogeneous Isotropic Turbulence with an Inverse Cascade, J.
Fluid Mech., 745, 279–299, 2014. a
Onishi, R., Takahashi, K., and Komori, S.: Influence of gravity on collisions
of monodispersed droplets in homogeneous isotropic turbulence, Phys. Fluids,
21, 125108,
https://doi.org/10.1063/1.3276906, 2009.
a
Pao, Y.: Statistical Behavior of a Turbulent Multicomponent Mixture with
First-Order Reactions, AIAA J., 2, 1550–1559, 1964. a
Pinsky, M., Khain, A., and Krugliak, H.: Collision of Cloud Droplets in a
Turbulent Flow. Part V: Application of Detailed Tables of Turbulent Collision
Rate Enhancement to Simulation of Droplet Spectra Evolution, J. Atmos. Sci.,
65, 357–374, 2008. a
Soong, S.-T.: Numerical simulation of warm rain development in an axisymmetric
cloud model, J. Atmos. Sci., 31, 1262–1285, 1974. a
Sreenivasan, K.: The passive scalar spectrum and the Obukhov–Corrsin constant,
Phys. Fluids, 8, 189–196, 1996. a
Sundaram, S. and Collins, L.: Collision statistics in an isotropic particle-laden
turbulent suspension. Part 1. Direct numerical simulations, J. Fluid Mech.,
335, 75–109, 1997. a
Twomey, S.: The nuclei of natural cloud formation. Part II: The supersaturation
in natural clouds and the variation of cloud droplets concentrations, Geofis.
Pura Appl., 43, 243–249, 1959. a
Wang, L. and Maxey, M.: Settling velocity and concentration distribution of
heavy particles in homogeneous isotropic turbulence, J. Fluid Mach., 256, 27–68, 1993.
a,
b
Wang, L., Rosa, B., Gao, H., He, G., and Jin, G.: Turbulent collision of inertial
particles: Point-particle based, hybrid simulations and beyond, Int. J.
Multiphase Flow, 35, 854–867, 2009. a