Articles | Volume 19, issue 24
https://doi.org/10.5194/acp-19-15651-2019
https://doi.org/10.5194/acp-19-15651-2019
Research article
 | 
20 Dec 2019
Research article |  | 20 Dec 2019

Potential dual effect of anthropogenic emissions on the formation of biogenic secondary organic aerosol (BSOA)

Eetu Kari, Liqing Hao, Arttu Ylisirniö, Angela Buchholz, Ari Leskinen, Pasi Yli-Pirilä, Ilpo Nuutinen, Kari Kuuspalo, Jorma Jokiniemi, Celia L. Faiola, Siegfried Schobesberger, and Annele Virtanen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Annele Virtanen on behalf of the Authors (16 Sep 2019)  Author's response    Manuscript
ED: Publish as is (20 Oct 2019) by Gordon McFiggans
Download
Short summary
We present, for the first time, the dual effect of GDI-vehicle exhaust on α-pinene SOA mass yield suppression. The first effect is a well-known NOx effect, but the second effect is more complex. Our results imply that this second effect is related to change of reaction pathways of α-pinene in the presence of GDI exhaust. The presence of vehicle exhaust caused more than 50 % suppression in α-pinene SOA mass yield compared to the α-pinene SOA mass yield measured in the absence of GDI emissions.
Altmetrics
Final-revised paper
Preprint