Supplement of Atmos. Chem. Phys., 19, 15247–15270, 2019
https://doi.org/10.5194/acp-19-15247-2019-supplement
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supplement of

Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme

Jianhui Jiang et al.

Correspondence to: Sebnem Aksoyoglu (sebnem.aksoyoglu@psi.ch) and Jianhui Jiang (jianhui.jiang@psi.ch)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1 Description of semi-volatile organic compounds (SVOC) and intermediate-volatility organic compounds (IVOC). The same calculations were adopted for IVOC emissions in BASE and NEW. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources.

<table>
<thead>
<tr>
<th>Species</th>
<th>Source</th>
<th>Calculations</th>
<th>BASE</th>
<th>NEW</th>
<th>References</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVOC</td>
<td>GV</td>
<td>= POA_GV</td>
<td>3 * POA_GV</td>
<td>Shrivastava et al., 2011; Tsimpidi et al., 2010; Ciarelli et al., 2017a</td>
<td>POA emissions of each source were calculated from TNO PM$_{2.5}$ emissions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DV</td>
<td>= POA_DV</td>
<td>3 * POA_DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>= POA_BB</td>
<td>3 * POA_BB</td>
<td>Ciarelli et al., 2017a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OthA</td>
<td>= POA_OthA</td>
<td>3 * POA_OthA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVOC</td>
<td>GV</td>
<td>= 25% * NMVOC_GV</td>
<td>Jathar et al., 2014</td>
<td>The portion of NMVOCs considered as IVOCs (25% for GV, 20% for DV) were removed from the NMVOC emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DV</td>
<td>= 20% * NMVOC_DV</td>
<td>Jathar et al., 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>= 4.5 * POA_BB</td>
<td>Ciarelli et al., 2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OthA</td>
<td>= 1.5 * POA_OthA</td>
<td>Robinson et al., 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meteorological parameters</th>
<th>Season</th>
<th>MB</th>
<th>Criteria</th>
<th>MGE</th>
<th>Criteria</th>
<th>RMSE</th>
<th>Criteria</th>
<th>IOA(-)</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>DJF</td>
<td>-1.1</td>
<td></td>
<td>1.2</td>
<td></td>
<td>1.5</td>
<td></td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAM</td>
<td>-0.8</td>
<td></td>
<td>0.9</td>
<td></td>
<td>1.2</td>
<td></td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>-0.4</td>
<td>≤±0.5</td>
<td>0.7</td>
<td>≤2</td>
<td>1.0</td>
<td></td>
<td>0.98</td>
<td>≥0.8</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>-0.4</td>
<td></td>
<td>0.7</td>
<td></td>
<td>0.9</td>
<td></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>-0.7</td>
<td></td>
<td>0.8</td>
<td></td>
<td>1.0</td>
<td></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Wind speed (m s⁻¹)</td>
<td>DJF</td>
<td>-0.1</td>
<td></td>
<td>1.2</td>
<td></td>
<td>1.6</td>
<td></td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAM</td>
<td>-0.3</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.3</td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>-0.3</td>
<td>≤±0.5</td>
<td>0.9</td>
<td></td>
<td>1.2</td>
<td>≤2</td>
<td>0.80</td>
<td>≥0.6</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>0.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.4</td>
<td></td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>-0.2</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.3</td>
<td></td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Wind direction (°)</td>
<td>DJF</td>
<td>8.9</td>
<td></td>
<td>17.7</td>
<td></td>
<td>28.6</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAM</td>
<td>5.4</td>
<td></td>
<td>16.1</td>
<td></td>
<td>24.4</td>
<td></td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>11.4</td>
<td>≤±10</td>
<td>18.6</td>
<td>≤30</td>
<td>29.3</td>
<td></td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>10.1</td>
<td></td>
<td>20.2</td>
<td></td>
<td>30.8</td>
<td></td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>9.0</td>
<td></td>
<td>16.5</td>
<td></td>
<td>26.2</td>
<td></td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Humidity (g kg⁻¹)</td>
<td>DJF</td>
<td>-0.1</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAM</td>
<td>0.0</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>-0.1</td>
<td>≤±1</td>
<td>0.4</td>
<td>≤2</td>
<td>0.6</td>
<td></td>
<td>0.94</td>
<td>≥0.6</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>-0.2</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>-0.1</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td>DJF</td>
<td>-0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.7</td>
<td></td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAM</td>
<td>-0.3</td>
<td></td>
<td>0.3</td>
<td></td>
<td>1.0</td>
<td></td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>-0.4</td>
<td></td>
<td>0.5</td>
<td></td>
<td>1.3</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>-0.4</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.7</td>
<td></td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>-0.4</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.8</td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

The units in the brackets are only for MB, MGE and RMSE. IOA is unitless.
Table S3. Evaluation of the model performance for the chemical species. MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; MFB: mean fractional bias; MFE: mean fractional error; IOA: index of agreement. DJF: December-January-February, MAM: March-April-May, JJA: June-July-August, SON: September-October-November.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of stations</th>
<th>Model</th>
<th>Season</th>
<th>MB</th>
<th>MGE</th>
<th>RMSE</th>
<th>MFB (%)</th>
<th>MFE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>565</td>
<td>Base</td>
<td>DJF</td>
<td>1.9</td>
<td>6.8</td>
<td>9.0</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAM</td>
<td>2.9</td>
<td>5.2</td>
<td>6.8</td>
<td>19</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JJA</td>
<td>-0.2</td>
<td>2.7</td>
<td>3.6</td>
<td>0</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SON</td>
<td>2.1</td>
<td>5.3</td>
<td>6.7</td>
<td>17</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual</td>
<td>1.6</td>
<td>4.4</td>
<td>5.7</td>
<td>13</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>New</td>
<td>DJF</td>
<td>3.8</td>
<td>7.4</td>
<td>9.5</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAM</td>
<td>4.5</td>
<td>6.0</td>
<td>7.7</td>
<td>26</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JJA</td>
<td>0.5</td>
<td>2.8</td>
<td>3.7</td>
<td>5</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SON</td>
<td>3.9</td>
<td>6.0</td>
<td>7.5</td>
<td>26</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual</td>
<td>3.1</td>
<td>5.0</td>
<td>6.2</td>
<td>21</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>O\textsubscript{3}</td>
<td>608</td>
<td>New</td>
<td>DJF</td>
<td>1.3</td>
<td>5.4</td>
<td>7.6</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAM</td>
<td>1.6</td>
<td>5.1</td>
<td>6.9</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JJA</td>
<td>1.0</td>
<td>4.6</td>
<td>6.3</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SON</td>
<td>2.7</td>
<td>5.2</td>
<td>7.2</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual</td>
<td>1.9</td>
<td>4.7</td>
<td>6.5</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>3036</td>
<td>New</td>
<td>DJF</td>
<td>-4.8</td>
<td>7.2</td>
<td>9.8</td>
<td>-35</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAM</td>
<td>-4.4</td>
<td>6.6</td>
<td>9.2</td>
<td>-42</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JJA</td>
<td>-2.7</td>
<td>5.1</td>
<td>7.5</td>
<td>-33</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SON</td>
<td>-3.3</td>
<td>6.3</td>
<td>8.5</td>
<td>-27</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual</td>
<td>-3.8</td>
<td>6.1</td>
<td>8.5</td>
<td>-35</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>1979</td>
<td>New</td>
<td>DJF</td>
<td>6.9</td>
<td>7.8</td>
<td>18.6</td>
<td>80</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAM</td>
<td>5.5</td>
<td>6.1</td>
<td>13.8</td>
<td>72</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JJA</td>
<td>4.4</td>
<td>4.9</td>
<td>11.2</td>
<td>71</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SON</td>
<td>7.4</td>
<td>8.0</td>
<td>18.2</td>
<td>90</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual</td>
<td>5.9</td>
<td>6.5</td>
<td>14.8</td>
<td>79</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* Units are ppb, except for PM\textsubscript{2.5} which is \(\mu g \) m\(^{-3}\).

Table S4. Performance criteria and goals for model results on PM\textsubscript{2.5} and ozone (Boylan and Russell, 2006; EPA, 2007).

<table>
<thead>
<tr>
<th>Species</th>
<th>Metric</th>
<th>Criteria</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>MFB</td>
<td>(\leq +60%)</td>
<td>(\leq +30%)</td>
</tr>
<tr>
<td></td>
<td>MFE</td>
<td>(\leq 75%)</td>
<td>(\leq 50%)</td>
</tr>
<tr>
<td>O\textsubscript{3}</td>
<td>MFB</td>
<td>(\leq +30%)</td>
<td>(\leq +15%)</td>
</tr>
<tr>
<td></td>
<td>MFE</td>
<td>(\leq 45%)</td>
<td>(\leq 30%)</td>
</tr>
</tbody>
</table>
Table S5. Seasonal statistical analysis of daily average organic aerosols at nine ACSM/AMS stations. MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; MFB: mean fractional bias; MFE: mean fractional error. Spring: March-April-May, summer: June-July-August, autumn: September-October-November, winter: December-January-February.

<table>
<thead>
<tr>
<th>Season</th>
<th>Site</th>
<th>MB (µg m⁻³)</th>
<th>MGE (µg m⁻³)</th>
<th>RMSE (µg m⁻³)</th>
<th>MFB (%)</th>
<th>MFE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>MHD</td>
<td>-0.1 0.1</td>
<td>0.7 0.8</td>
<td>1.6 1.7</td>
<td>-86 -74</td>
<td>117 114</td>
</tr>
<tr>
<td></td>
<td>MRS</td>
<td>-9.4 -7.6</td>
<td>9.4 7.6</td>
<td>9.7 8.0</td>
<td>-163 -116</td>
<td>163 116</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-1.7 0.8</td>
<td>3.5 3.7</td>
<td>4.7 5.0</td>
<td>-34 8</td>
<td>64 53</td>
</tr>
<tr>
<td></td>
<td>SMEARII</td>
<td>0.0 0.7</td>
<td>0.4 0.8</td>
<td>0.6 1.2</td>
<td>-10 58</td>
<td>54 70</td>
</tr>
<tr>
<td></td>
<td>MHD</td>
<td>0.0 0.0</td>
<td>0.3 0.3</td>
<td>0.5 0.6</td>
<td>-91 -83</td>
<td>119 115</td>
</tr>
<tr>
<td></td>
<td>MSA</td>
<td>-2.4 -2.0</td>
<td>2.6 2.3</td>
<td>3.2 2.8</td>
<td>-89 -73</td>
<td>97 83</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-1.0 0.1</td>
<td>3.2 3.3</td>
<td>4.8 5.0</td>
<td>-21 3</td>
<td>65 59</td>
</tr>
<tr>
<td></td>
<td>BLQ</td>
<td>-8.4 0.5</td>
<td>8.7 5.5</td>
<td>10.8 7.0</td>
<td>-62 10</td>
<td>67 35</td>
</tr>
<tr>
<td></td>
<td>FKL</td>
<td>-1.1 -0.1</td>
<td>1.5 1.4</td>
<td>2.2 1.9</td>
<td>-53 -17</td>
<td>70 58</td>
</tr>
<tr>
<td></td>
<td>MHD</td>
<td>-0.1 -0.1</td>
<td>0.2 0.2</td>
<td>0.5 0.5</td>
<td>-90 -83</td>
<td>116 113</td>
</tr>
<tr>
<td></td>
<td>MSA</td>
<td>-1.4 -0.6</td>
<td>1.9 1.7</td>
<td>2.4 2.2</td>
<td>-42 -12</td>
<td>72 59</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-7.6 -4.3</td>
<td>7.7 5.4</td>
<td>11.0 8.5</td>
<td>-108 -43</td>
<td>111 63</td>
</tr>
<tr>
<td></td>
<td>SPC</td>
<td>-2.7 5.7</td>
<td>5.3 8.0</td>
<td>6.9 9.6</td>
<td>-14 52</td>
<td>59 68</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.6 2.2</td>
<td>3.6 4.4</td>
<td>4.7 6.1</td>
<td>-16 17</td>
<td>54 53</td>
</tr>
<tr>
<td>winter</td>
<td>BLQ</td>
<td>-21.4 -16.2</td>
<td>21.4 16.4</td>
<td>23.4 19.0</td>
<td>-149 -98</td>
<td>149 99</td>
</tr>
<tr>
<td></td>
<td>MHD</td>
<td>0.0 0.1</td>
<td>0.3 0.3</td>
<td>0.6 0.6</td>
<td>-4 7</td>
<td>91 89</td>
</tr>
<tr>
<td></td>
<td>MRS</td>
<td>-7.8 -5.3</td>
<td>7.8 5.8</td>
<td>11.0 9.3</td>
<td>-109 -55</td>
<td>111 65</td>
</tr>
<tr>
<td></td>
<td>MSA</td>
<td>0.1 0.5</td>
<td>0.6 0.9</td>
<td>0.9 1.3</td>
<td>-10 10</td>
<td>90 92</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-3.6 -1.7</td>
<td>3.6 2.8</td>
<td>5.5 4.4</td>
<td>-110 -31</td>
<td>117 71</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-4.1 -0.5</td>
<td>4.6 3.7</td>
<td>5.9 4.9</td>
<td>-68 -3</td>
<td>82 55</td>
</tr>
<tr>
<td>HOA</td>
<td>MRS</td>
<td>-1.4 -0.8</td>
<td>1.4 1.2</td>
<td>2.1 1.7</td>
<td>-107 -33</td>
<td>137 99</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.3 0.4</td>
<td>0.4 0.7</td>
<td>0.6 0.9</td>
<td>-41 52</td>
<td>81 81</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.3 -0.2</td>
<td>0.3 0.2</td>
<td>0.3 0.3</td>
<td>-157 -102</td>
<td>158 111</td>
</tr>
<tr>
<td></td>
<td>BLQ</td>
<td>-1.6 0.2</td>
<td>1.7 1.4</td>
<td>2.6 1.9</td>
<td>-66 35</td>
<td>82 65</td>
</tr>
<tr>
<td></td>
<td>MSA</td>
<td>-0.2 -0.2</td>
<td>0.2 0.2</td>
<td>0.3 0.2</td>
<td>-147 -84</td>
<td>149 92</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-0.7 0.1</td>
<td>0.8 0.8</td>
<td>1.4 1.3</td>
<td>-76 21</td>
<td>98 73</td>
</tr>
<tr>
<td></td>
<td>SPC</td>
<td>-2.3 -1.1</td>
<td>2.3 1.4</td>
<td>2.7 1.8</td>
<td>-129 -42</td>
<td>130 58</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.3 0.6</td>
<td>0.5 0.9</td>
<td>0.7 1.1</td>
<td>-26 65</td>
<td>81 86</td>
</tr>
<tr>
<td>winter</td>
<td>BLQ</td>
<td>-3.4 -2.2</td>
<td>3.4 2.6</td>
<td>4.9 4.1</td>
<td>-134 -53</td>
<td>137 82</td>
</tr>
<tr>
<td></td>
<td>MRS</td>
<td>-1.2 -0.5</td>
<td>1.3 1.1</td>
<td>2.1 1.8</td>
<td>-88 -3</td>
<td>116 83</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-0.3 0.1</td>
<td>0.3 0.3</td>
<td>0.5 0.5</td>
<td>-70 30</td>
<td>101 80</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.1 1.0</td>
<td>0.4 1.2</td>
<td>0.6 1.5</td>
<td>3 92</td>
<td>80 105</td>
</tr>
<tr>
<td>BBOA</td>
<td>MRS</td>
<td>-3.8 -3.0</td>
<td>3.8 3.0</td>
<td>4.6 3.9</td>
<td>-164 -104</td>
<td>164 104</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.4 0.4</td>
<td>0.6 0.8</td>
<td>0.8 1.2</td>
<td>-57 37</td>
<td>85 74</td>
</tr>
<tr>
<td></td>
<td>BLQ</td>
<td>-4.0 1.0</td>
<td>4.0 2.9</td>
<td>5.1 3.5</td>
<td>-83 23</td>
<td>86 46</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-2.0 0.0</td>
<td>2.1 1.9</td>
<td>3.4 2.8</td>
<td>-70 22</td>
<td>103 76</td>
</tr>
<tr>
<td></td>
<td>SPC</td>
<td>-1.0 4.1</td>
<td>2.9 5.3</td>
<td>4.3 6.5</td>
<td>35 104</td>
<td>115 118</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.8 0.2</td>
<td>0.8 0.8</td>
<td>1.2 1.2</td>
<td>-74 18</td>
<td>94 67</td>
</tr>
<tr>
<td>Season</td>
<td>Site</td>
<td>MB (µg m(^{-3}))</td>
<td>MGE (µg m(^{-3}))</td>
<td>RMSE (µg m(^{-3}))</td>
<td>MFB (%)</td>
<td>MFE (%)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td>BASE NEW</td>
<td>BASE NEW</td>
</tr>
<tr>
<td>winter</td>
<td>BLQ</td>
<td>-4.8 -1.6</td>
<td>4.8 3.2</td>
<td>6.0 4.2</td>
<td>-121 -29</td>
<td>121 59</td>
</tr>
<tr>
<td></td>
<td>MRS</td>
<td>-3.6 -2.6</td>
<td>3.7 3.1</td>
<td>6.9 6.4</td>
<td>-118 -37</td>
<td>126 80</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-1.0 0.5</td>
<td>1.2 1.5</td>
<td>2.1 2.1</td>
<td>-46 46</td>
<td>100 85</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.5 1.3</td>
<td>0.8 1.7</td>
<td>1.2 2.2</td>
<td>-21 71</td>
<td>82 96</td>
</tr>
<tr>
<td>spring</td>
<td>MRS</td>
<td>-3.9 -3.5</td>
<td>3.9 3.5</td>
<td>3.9 3.6</td>
<td>-158 -135</td>
<td>158 135</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-0.3 0.6</td>
<td>2.9 3.0</td>
<td>3.8 4.0</td>
<td>-15 6</td>
<td>69 64</td>
</tr>
<tr>
<td></td>
<td>SMEARII</td>
<td>-0.2 0.0</td>
<td>0.4 0.4</td>
<td>0.6 0.6</td>
<td>-57 -23</td>
<td>81 65</td>
</tr>
<tr>
<td>summer</td>
<td>MSA</td>
<td>-1.1 -0.9</td>
<td>1.5 1.3</td>
<td>1.9 1.7</td>
<td>-62 -48</td>
<td>82 72</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>0.4 0.8</td>
<td>2.5 2.5</td>
<td>3.5 3.6</td>
<td>5 16</td>
<td>64 62</td>
</tr>
<tr>
<td>autumn</td>
<td>BLQ</td>
<td>-0.8 1.4</td>
<td>2.3 2.9</td>
<td>2.9 3.5</td>
<td>-2 33</td>
<td>49 54</td>
</tr>
<tr>
<td></td>
<td>FKL</td>
<td>-1.3 -0.7</td>
<td>1.6 1.3</td>
<td>2.3 1.9</td>
<td>-62 -37</td>
<td>75 61</td>
</tr>
<tr>
<td></td>
<td>MSA</td>
<td>-1.0 -0.5</td>
<td>1.3 1.1</td>
<td>1.7 1.5</td>
<td>-43 -23</td>
<td>61 49</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-3.2 -2.6</td>
<td>3.2 2.9</td>
<td>4.8 4.4</td>
<td>-97 -72</td>
<td>104 86</td>
</tr>
<tr>
<td></td>
<td>SPC</td>
<td>1.1 3.2</td>
<td>2.9 4.0</td>
<td>3.3 4.6</td>
<td>54 82</td>
<td>85 93</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>1.5 2.4</td>
<td>3.0 3.4</td>
<td>4.2 4.9</td>
<td>17 31</td>
<td>58 60</td>
</tr>
<tr>
<td>winter</td>
<td>BLQ</td>
<td>-9.3 -8.5</td>
<td>9.3 8.5</td>
<td>10.4 9.8</td>
<td>-144 -126</td>
<td>144 126</td>
</tr>
<tr>
<td></td>
<td>MRS</td>
<td>-2.5 -1.8</td>
<td>2.6 2.2</td>
<td>3.4 2.9</td>
<td>-71 -43</td>
<td>84 65</td>
</tr>
<tr>
<td></td>
<td>SIRTA</td>
<td>-1.3 -1.3</td>
<td>1.4 1.3</td>
<td>2.0 2.0</td>
<td>-138 -127</td>
<td>142 133</td>
</tr>
<tr>
<td></td>
<td>ZRH</td>
<td>-3.8 -3.1</td>
<td>4.2 3.8</td>
<td>5.8 5.4</td>
<td>-78 -55</td>
<td>98 86</td>
</tr>
</tbody>
</table>
Table S6: Relative contributions (%) of different sources to the organic aerosol (OA) concentration on a country scale. DJF: December – January – February; JJA: June – July – August.

<table>
<thead>
<tr>
<th>Country</th>
<th>Gasoline vehicles DJF</th>
<th>Gasoline vehicles JJA</th>
<th>Diesel vehicles DJF</th>
<th>Diesel vehicles JJA</th>
<th>Biomass burning DJF</th>
<th>Biomass burning JJA</th>
<th>Other anthropogenic DJF</th>
<th>Other anthropogenic JJA</th>
<th>Biogenic DJF</th>
<th>Biogenic JJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>2.0</td>
<td>6.3</td>
<td>1.8</td>
<td>3.1</td>
<td>71.8</td>
<td>34.6</td>
<td>9.2</td>
<td>21.4</td>
<td>15.2</td>
<td>34.7</td>
</tr>
<tr>
<td>Austria</td>
<td>1.6</td>
<td>4.8</td>
<td>3.9</td>
<td>3.7</td>
<td>59.9</td>
<td>15.9</td>
<td>10.0</td>
<td>18.7</td>
<td>24.6</td>
<td>57.0</td>
</tr>
<tr>
<td>Belarus</td>
<td>0.9</td>
<td>2.2</td>
<td>2.1</td>
<td>1.7</td>
<td>65.7</td>
<td>21.1</td>
<td>8.4</td>
<td>11.5</td>
<td>22.8</td>
<td>63.5</td>
</tr>
<tr>
<td>Belgium</td>
<td>1.4</td>
<td>3.9</td>
<td>7.3</td>
<td>6.7</td>
<td>51.0</td>
<td>16.7</td>
<td>14.4</td>
<td>28.7</td>
<td>25.9</td>
<td>44.0</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>1.3</td>
<td>5.5</td>
<td>1.4</td>
<td>3.2</td>
<td>79.8</td>
<td>35.4</td>
<td>6.4</td>
<td>19.8</td>
<td>11.2</td>
<td>36.1</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1.4</td>
<td>4.0</td>
<td>1.4</td>
<td>2.3</td>
<td>77.9</td>
<td>39.2</td>
<td>7.9</td>
<td>17.5</td>
<td>11.3</td>
<td>37.0</td>
</tr>
<tr>
<td>Croatia</td>
<td>1.9</td>
<td>6.1</td>
<td>2.4</td>
<td>3.7</td>
<td>70.8</td>
<td>28.8</td>
<td>7.6</td>
<td>21.1</td>
<td>17.2</td>
<td>40.3</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1.3</td>
<td>2.5</td>
<td>2.5</td>
<td>1.5</td>
<td>35.6</td>
<td>13.5</td>
<td>6.1</td>
<td>8.9</td>
<td>54.6</td>
<td>73.6</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1.1</td>
<td>3.3</td>
<td>4.7</td>
<td>4.4</td>
<td>54.9</td>
<td>16.1</td>
<td>6.7</td>
<td>15.4</td>
<td>32.6</td>
<td>60.7</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.6</td>
<td>3.5</td>
<td>2.3</td>
<td>2.9</td>
<td>64.2</td>
<td>20.1</td>
<td>8.2</td>
<td>25.7</td>
<td>24.6</td>
<td>47.9</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.4</td>
<td>2.0</td>
<td>1.1</td>
<td>1.3</td>
<td>78.5</td>
<td>19.1</td>
<td>4.3</td>
<td>11.1</td>
<td>15.8</td>
<td>66.5</td>
</tr>
<tr>
<td>Finland</td>
<td>0.4</td>
<td>1.4</td>
<td>1.8</td>
<td>0.9</td>
<td>57.0</td>
<td>7.8</td>
<td>7.6</td>
<td>7.4</td>
<td>33.2</td>
<td>82.5</td>
</tr>
<tr>
<td>France</td>
<td>1.4</td>
<td>4.6</td>
<td>4.5</td>
<td>4.9</td>
<td>62.7</td>
<td>22.3</td>
<td>10.8</td>
<td>29.4</td>
<td>20.6</td>
<td>38.8</td>
</tr>
<tr>
<td>Germany</td>
<td>1.3</td>
<td>3.8</td>
<td>4.2</td>
<td>3.6</td>
<td>46.6</td>
<td>12.5</td>
<td>10.3</td>
<td>19.4</td>
<td>37.5</td>
<td>60.8</td>
</tr>
<tr>
<td>Greece</td>
<td>2.3</td>
<td>5.1</td>
<td>1.4</td>
<td>1.8</td>
<td>58.3</td>
<td>23.2</td>
<td>9.9</td>
<td>16.9</td>
<td>28.1</td>
<td>53.0</td>
</tr>
<tr>
<td>Hungary</td>
<td>1.5</td>
<td>4.7</td>
<td>2.4</td>
<td>3.8</td>
<td>74.5</td>
<td>30.7</td>
<td>8.1</td>
<td>20.3</td>
<td>13.6</td>
<td>40.5</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.6</td>
<td>1.6</td>
<td>3.2</td>
<td>2.8</td>
<td>16.0</td>
<td>5.5</td>
<td>5.8</td>
<td>11.2</td>
<td>74.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Italy</td>
<td>4.4</td>
<td>10.9</td>
<td>4.4</td>
<td>4.5</td>
<td>70.0</td>
<td>25.2</td>
<td>10.5</td>
<td>29.3</td>
<td>10.7</td>
<td>30.1</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.4</td>
<td>2.2</td>
<td>1.4</td>
<td>1.7</td>
<td>80.1</td>
<td>23.3</td>
<td>4.3</td>
<td>12.2</td>
<td>13.9</td>
<td>60.6</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.6</td>
<td>2.6</td>
<td>2.8</td>
<td>2.5</td>
<td>69.3</td>
<td>22.2</td>
<td>7.5</td>
<td>14.9</td>
<td>19.8</td>
<td>57.8</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1.6</td>
<td>3.9</td>
<td>12.9</td>
<td>11.6</td>
<td>50.3</td>
<td>15.5</td>
<td>13.3</td>
<td>23.6</td>
<td>21.9</td>
<td>45.5</td>
</tr>
<tr>
<td>Northern Macedonia</td>
<td>1.5</td>
<td>4.9</td>
<td>1.2</td>
<td>2.5</td>
<td>73.8</td>
<td>36.9</td>
<td>7.6</td>
<td>18.2</td>
<td>15.8</td>
<td>37.5</td>
</tr>
<tr>
<td>Malta</td>
<td>5.4</td>
<td>11.7</td>
<td>3.2</td>
<td>6.1</td>
<td>57.3</td>
<td>20.2</td>
<td>19.6</td>
<td>45.7</td>
<td>14.5</td>
<td>16.3</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.6</td>
<td>3.9</td>
<td>7.1</td>
<td>5.5</td>
<td>44.4</td>
<td>11.6</td>
<td>14.5</td>
<td>28.3</td>
<td>32.4</td>
<td>50.7</td>
</tr>
<tr>
<td>Norway</td>
<td>0.4</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>59.3</td>
<td>9.8</td>
<td>9.8</td>
<td>11.3</td>
<td>29.3</td>
<td>76.5</td>
</tr>
<tr>
<td>Poland</td>
<td>0.9</td>
<td>3.1</td>
<td>5.4</td>
<td>4.6</td>
<td>56.9</td>
<td>17.0</td>
<td>8.9</td>
<td>17.1</td>
<td>27.8</td>
<td>58.2</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.9</td>
<td>2.2</td>
<td>2.4</td>
<td>2.8</td>
<td>42.4</td>
<td>17.8</td>
<td>8.9</td>
<td>17.9</td>
<td>45.4</td>
<td>59.3</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>1.4</td>
<td>3.7</td>
<td>1.3</td>
<td>2.2</td>
<td>78.7</td>
<td>44.3</td>
<td>9.5</td>
<td>19.5</td>
<td>9.1</td>
<td>30.3</td>
</tr>
<tr>
<td>Romania</td>
<td>1.1</td>
<td>3.7</td>
<td>1.0</td>
<td>2.2</td>
<td>82.2</td>
<td>42.5</td>
<td>6.7</td>
<td>17.2</td>
<td>9.1</td>
<td>34.3</td>
</tr>
<tr>
<td>Russia</td>
<td>0.7</td>
<td>1.4</td>
<td>1.7</td>
<td>1.0</td>
<td>62.9</td>
<td>13.9</td>
<td>8.8</td>
<td>8.0</td>
<td>25.8</td>
<td>75.7</td>
</tr>
<tr>
<td>Serbia and Montenegro</td>
<td>1.4</td>
<td>5.1</td>
<td>1.3</td>
<td>3.0</td>
<td>81.9</td>
<td>44.0</td>
<td>7.0</td>
<td>19.0</td>
<td>8.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.9</td>
<td>3.8</td>
<td>2.3</td>
<td>4.0</td>
<td>74.1</td>
<td>27.5</td>
<td>5.3</td>
<td>16.8</td>
<td>17.4</td>
<td>47.9</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1.3</td>
<td>5.5</td>
<td>2.3</td>
<td>3.7</td>
<td>76.2</td>
<td>26.5</td>
<td>5.2</td>
<td>17.6</td>
<td>14.9</td>
<td>46.6</td>
</tr>
<tr>
<td>Spain</td>
<td>0.9</td>
<td>2.0</td>
<td>2.4</td>
<td>2.0</td>
<td>42.0</td>
<td>18.9</td>
<td>8.0</td>
<td>17.2</td>
<td>46.6</td>
<td>59.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.0</td>
<td>34.3</td>
<td>7.0</td>
<td>8.8</td>
<td>9.7</td>
<td>55.0</td>
<td>80.6</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.9</td>
<td>6.9</td>
<td>4.6</td>
<td>3.9</td>
<td>56.4</td>
<td>17.5</td>
<td>15.8</td>
<td>23.4</td>
<td>20.3</td>
<td>48.3</td>
</tr>
<tr>
<td>Turkey</td>
<td>1.1</td>
<td>2.3</td>
<td>1.2</td>
<td>1.3</td>
<td>60.7</td>
<td>21.2</td>
<td>9.0</td>
<td>11.9</td>
<td>28.0</td>
<td>63.3</td>
</tr>
<tr>
<td>Ukraine</td>
<td>1.2</td>
<td>3.1</td>
<td>1.6</td>
<td>2.0</td>
<td>71.7</td>
<td>33.8</td>
<td>11.2</td>
<td>17.4</td>
<td>14.3</td>
<td>43.8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.8</td>
<td>2.0</td>
<td>3.7</td>
<td>3.0</td>
<td>28.1</td>
<td>7.5</td>
<td>11.5</td>
<td>20.7</td>
<td>56.0</td>
<td>66.7</td>
</tr>
</tbody>
</table>
Figure S1: Model domain and spatial distribution of the ACSM/AMS stations.
Figure S2: Temporal variations of modelled and measured organic aerosol concentrations together with some meteorological parameters available at Bologna, Marseille and Mace Head.
Figure S3: Comparison between modelled relative contribution of OA components and positive matrix factorization (PMF) analysis results. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources; BIO: Biogenic sources.
Figure S4: Spatial distributions of primary and secondary OA from different sources in winter (a, b) and summer (c, d). The winter and summer results are the averages of December – January – February and June – July – August, respectively. Note that different scales are used for biomass burning and biogenic source to facilitate visualization.
Figure S5: Relative contributions of different anthropogenic sources to total PM$_{2.5}$ and NMVOC emissions in 2011. The 8 sub-regions are the Iberian Peninsula (IP), the Mediterranean (MD), Po Valley (PV), eastern Europe (EE), central Europe (CE), Benelux (BX), Ireland and Great Britain (IG), and Scandinavia (SC).