Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 22
Atmos. Chem. Phys., 19, 13945–13956, 2019
https://doi.org/10.5194/acp-19-13945-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 13945–13956, 2019
https://doi.org/10.5194/acp-19-13945-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Nov 2019

Research article | 20 Nov 2019

Molecular characterization of polar organic aerosol constituents in off-road engine emissions using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): implications for source apportionment

Min Cui et al.

Related authors

Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis
Jiao Tang, Jun Li, Tao Su, Yong Han, Yangzhi Mo, Hongxing Jiang, Min Cui, Bin Jiang, Yingjun Chen, Jianhui Tang, Jianzhong Song, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020,https://doi.org/10.5194/acp-20-2513-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Seawater analysis by ambient mass-spectrometry-based seaomics
Nicolás Zabalegui, Malena Manzi, Antoine Depoorter, Nathalie Hayeck, Marie Roveretto, Chunlin Li, Manuela van Pinxteren, Hartmut Herrmann, Christian George, and María Eugenia Monge
Atmos. Chem. Phys., 20, 6243–6257, https://doi.org/10.5194/acp-20-6243-2020,https://doi.org/10.5194/acp-20-6243-2020, 2020
Short summary
Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry
Jing Cai, Xiangying Zeng, Guorui Zhi, Sasho Gligorovski, Guoying Sheng, Zhiqiang Yu, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 20, 6115–6128, https://doi.org/10.5194/acp-20-6115-2020,https://doi.org/10.5194/acp-20-6115-2020, 2020
Short summary
Heterogeneous oxidation of amorphous organic aerosol surrogates by O3, NO3, and OH at typical tropospheric temperatures
Jienan Li, Seanna M. Forrester, and Daniel A. Knopf
Atmos. Chem. Phys., 20, 6055–6080, https://doi.org/10.5194/acp-20-6055-2020,https://doi.org/10.5194/acp-20-6055-2020, 2020
Short summary
High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa
Abdoulaye Samaké, Aurélie Bonin, Jean-Luc Jaffrezo, Pierre Taberlet, Samuël Weber, Gaëlle Uzu, Véronique Jacob, Sébastien Conil, and Jean M. F. Martins
Atmos. Chem. Phys., 20, 5609–5628, https://doi.org/10.5194/acp-20-5609-2020,https://doi.org/10.5194/acp-20-5609-2020, 2020
Short summary
Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene
Yonghong Wang, Matthieu Riva, Hongbin Xie, Liine Heikkinen, Simon Schallhart, Qiaozhi Zha, Chao Yan, Xu-Cheng He, Otso Peräkylä, and Mikael Ehn
Atmos. Chem. Phys., 20, 5145–5155, https://doi.org/10.5194/acp-20-5145-2020,https://doi.org/10.5194/acp-20-5145-2020, 2020
Short summary

Cited articles

Cui, M., Chen, Y., Feng, Y., Li, C., Zheng, J., Tian, C., Yan, C., and Zheng, M.: Measurement of PM and its chemical composition in real-world emissions from non-road and on-road diesel vehicles, Atmos. Chem. Phys., 17, 6779–6795, https://doi.org/10.5194/acp-17-6779-2017, 2017. 
Deng, W., Hu, Q. H., Liu, T. Y., Wang, X. M., Zhang, Y. L., Song, W., Sun, Y. L., Bi, X. H., Yu, J. Z., Yang, W. G., Huang, X. Y., Zhang, Z., Huang, Z. H., He, Q. F., Mellouki, A., and George, C.: Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China, Sci. Total Environ., 593, 462–469, 2017. 
Gao, S., Surratt, J. D., Knipping, E. M., Edgerton, E. S., Shahgholi, M., and Seinfeld, J. H.: Characterization of polar organic components in fine aerosols in the southeastern United States: Identity, origin, and evolution, J. Geophys. Res., 111, D14314, https://doi.org/10.1029/2005JD006601, 2006 
Hellier, P., Talibi, M., Eveleigh, A., and Ladommatos, N.: An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232, 90–105, 2017. 
Hockaday, W. C., Grannas, A. M., Kim, S., and Hatcher, P. G.: Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil, Org. Geochem., 37, 501–510, 2006. 
Publications Copernicus
Download
Short summary
Refined source apportionment is urgently needed but hard to achieve due to a lack of specific biomarkers. Recently, Fourier transform ion cyclotron resonance mass spectrometry has been used to analyse the probable chemical structure of polar organic matter emitted from off-road engines. We found more condensed aromatic rings in S-containing compounds for HFO-fueled vessels, while more abundant aliphatic chains were observed in emissions from diesel equipment.
Refined source apportionment is urgently needed but hard to achieve due to a lack of specific...
Citation