Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
ACP | Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 1393-1411, 2019
https://doi.org/10.5194/acp-19-1393-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 1393-1411, 2019
https://doi.org/10.5194/acp-19-1393-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 01 Feb 2019

Research article | 01 Feb 2019

Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions

Nikolaos Evangeliou et al.
Related authors  
The Lagrangian particle dispersion model FLEXPART version 10.3
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-333,https://doi.org/10.5194/gmd-2018-333, 2019
Manuscript under review for GMD
Short summary
Top-down estimates of black carbon emissions at high latitudes using an atmospheric transport model and a Bayesian inversion framework
Nikolaos Evangeliou, Rona L. Thompson, Sabine Eckhardt, and Andreas Stohl
Atmos. Chem. Phys., 18, 15307-15327, https://doi.org/10.5194/acp-18-15307-2018,https://doi.org/10.5194/acp-18-15307-2018, 2018
Short summary
Simulating CH4 and CO2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA
Xin Lin, Philippe Ciais, Philippe Bousquet, Michel Ramonet, Yi Yin, Yves Balkanski, Anne Cozic, Marc Delmotte, Nikolaos Evangeliou, Nuggehalli K. Indira, Robin Locatelli, Shushi Peng, Shilong Piao, Marielle Saunois, Panangady S. Swathi, Rong Wang, Camille Yver-Kwok, Yogesh K. Tiwari, and Lingxi Zhou
Atmos. Chem. Phys., 18, 9475-9497, https://doi.org/10.5194/acp-18-9475-2018,https://doi.org/10.5194/acp-18-9475-2018, 2018
Short summary
Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter–spring 2014, 2015 and 2016
Nikolaos Evangeliou, Vladimir P. Shevchenko, Karl Espen Yttri, Sabine Eckhardt, Espen Sollum, Oleg S. Pokrovsky, Vasily O. Kobelev, Vladimir B. Korobov, Andrey A. Lobanov, Dina P. Starodymova, Sergey N. Vorobiev, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 18, 963-977, https://doi.org/10.5194/acp-18-963-2018,https://doi.org/10.5194/acp-18-963-2018, 2018
Short summary
Source–receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode
Sabine Eckhardt, Massimo Cassiani, Nikolaos Evangeliou, Espen Sollum, Ignacio Pisso, and Andreas Stohl
Geosci. Model Dev., 10, 4605-4618, https://doi.org/10.5194/gmd-10-4605-2017,https://doi.org/10.5194/gmd-10-4605-2017, 2017
Short summary
Related subject area  
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources
Zhengguo Shi, Xiaoning Xie, Xinzhou Li, Liu Yang, Xiaoxun Xie, Jing Lei, Yingying Sha, and Xiaodong Liu
Atmos. Chem. Phys., 19, 1605-1622, https://doi.org/10.5194/acp-19-1605-2019,https://doi.org/10.5194/acp-19-1605-2019, 2019
Short summary
Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing
Jiayu Xu, Jiachen Zhang, Junfeng Liu, Kan Yi, Songlin Xiang, Xiurong Hu, Yuqing Wang, Shu Tao, and George Ban-Weiss
Atmos. Chem. Phys., 19, 1587-1603, https://doi.org/10.5194/acp-19-1587-2019,https://doi.org/10.5194/acp-19-1587-2019, 2019
Short summary
Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241-1261, https://doi.org/10.5194/acp-19-1241-2019,https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary
Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model
Florent F. Malavelle, Jim M. Haywood, Lina M. Mercado, Gerd A. Folberth, Nicolas Bellouin, Stephen Sitch, and Paulo Artaxo
Atmos. Chem. Phys., 19, 1301-1326, https://doi.org/10.5194/acp-19-1301-2019,https://doi.org/10.5194/acp-19-1301-2019, 2019
Short summary
The value of satellite observations in the analysis and short-range prediction of Asian dust
Angela Benedetti, Francesca Di Giuseppe, Luke Jones, Vincent-Henri Peuch, Samuel Rémy, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 987-998, https://doi.org/10.5194/acp-19-987-2019,https://doi.org/10.5194/acp-19-987-2019, 2019
Cited articles  
Abdalati, W. and Steffen, K.: Greenland Ice Sheet melt extent: 1979–1999, J. Geophys. Res.-Atmos., 106, 33983–33988, https://doi.org/10.1029/2001JD900181, 2001. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
AMAP: Snow, Water, Ice and Permafrost. Summary for Policy-makers, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, available at: https://www.amap.no/documents/doc/Snow-Water-Ice-and-Permafrost.-Summary-for-Policy-makers/1532, last access: 27 November 2017. 
Anderson, C. H., Dibb, J. E., Griffin, R. J., Hagler, G. S. W., and Bergin, M. H.: Atmospheric water-soluble organic carbon measurements at Summit, Greenland, Atmos. Environ., 42, 5612–5621, https://doi.org/10.1016/j.atmosenv.2008.03.006, 2008. 
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
Publications Copernicus
Download
Short summary
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data, we estimated that the total burned area was 2345 ha, the fuel amount consumed 117 kt C and the emissions of BC, OC and BrC 23.5, 731 and 141 t, respectively. About 30 % of the emissions were deposited on snow or ice surfaces. This caused a maximum albedo change of 0.007 and a surface radiative forcing of 0.03–0.04 W m−2, with local maxima of up to 0.63–0.77 W m−2. Overall, the fires had a small impact.
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data,...
Citation