Articles | Volume 19, issue 22
https://doi.org/10.5194/acp-19-13773-2019
https://doi.org/10.5194/acp-19-13773-2019
Research article
 | 
18 Nov 2019
Research article |  | 18 Nov 2019

Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements

Moritz Haarig, Adrian Walser, Albert Ansmann, Maximilian Dollner, Dietrich Althausen, Daniel Sauer, David Farrell, and Bernadett Weinzierl

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Moritz Haarig on behalf of the Authors (27 Sep 2019)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (08 Oct 2019) by Joshua Schwarz
AR by Moritz Haarig on behalf of the Authors (11 Oct 2019)  Author's response   Manuscript 
ED: Publish as is (11 Oct 2019) by Joshua Schwarz
AR by Moritz Haarig on behalf of the Authors (11 Oct 2019)  Manuscript 
Download
Short summary
Aerosol particles are necessary in forming a cloud droplet. In order to improve studies of cloud formation, the aerosol load and type below a cloud has to be measured without disturbing the cloud. The lidar is a perfect tool for this purpose, as it provides a vertical profile of the aerosol particles from the ground. We validated the lidar retrieval of cloud-relevant aerosol properties like particle number concentrations with airborne in situ measurements in the Saharan Air Layer at Barbados.
Altmetrics
Final-revised paper
Preprint