Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 21
Atmos. Chem. Phys., 19, 13519–13533, 2019
https://doi.org/10.5194/acp-19-13519-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 13519–13533, 2019
https://doi.org/10.5194/acp-19-13519-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Nov 2019

Research article | 06 Nov 2019

The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017

Ziyue Chen et al.
Related authors  
Evaluating the “2+26” regional strategy for air quality improvement during two air pollution alerts in Beijing: variations in PM2.5 concentrations, source apportionment, and the relative contribution of local emission and regional transport
Ziyue Chen, Danlu Chen, Wei Wen, Yan Zhuang, Mei-Po Kwan, Bin Chen, Bo Zhao, Lin Yang, Bingbo Gao, Ruiyuan Li, and Bing Xu
Atmos. Chem. Phys., 19, 6879–6891, https://doi.org/10.5194/acp-19-6879-2019,https://doi.org/10.5194/acp-19-6879-2019, 2019
Short summary
Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective
Ziyue Chen, Xiaoming Xie, Jun Cai, Danlu Chen, Bingbo Gao, Bin He, Nianliang Cheng, and Bing Xu
Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018,https://doi.org/10.5194/acp-18-5343-2018, 2018
Short summary
Related subject area  
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Analysis of temporal and spatial variability of atmospheric CO2 concentration within Paris from the GreenLITE laser imaging experiment
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, T. Scott Zaccheo, Jeremy Dobler, Michel Ramonet, Johannes Staufer, Diego Santaren, Irène Xueref-Remy, and Philippe Ciais
Atmos. Chem. Phys., 19, 13809–13825, https://doi.org/10.5194/acp-19-13809-2019,https://doi.org/10.5194/acp-19-13809-2019, 2019
Short summary
A typical weather pattern for ozone pollution events in North China
Cheng Gong and Hong Liao
Atmos. Chem. Phys., 19, 13725–13740, https://doi.org/10.5194/acp-19-13725-2019,https://doi.org/10.5194/acp-19-13725-2019, 2019
Short summary
Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019,https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Foreign influences on tropospheric ozone over East Asia through global atmospheric transport
Han Han, Jane Liu, Huiling Yuan, Tijian Wang, Bingliang Zhuang, and Xun Zhang
Atmos. Chem. Phys., 19, 12495–12514, https://doi.org/10.5194/acp-19-12495-2019,https://doi.org/10.5194/acp-19-12495-2019, 2019
Short summary
Estimating ground-level CO concentrations across China based on the national monitoring network and MOPITT: potentially overlooked CO hotspots in the Tibetan Plateau
Dongren Liu, Baofeng Di, Yuzhou Luo, Xunfei Deng, Hanyue Zhang, Fumo Yang, Michael L. Grieneisen, and Yu Zhan
Atmos. Chem. Phys., 19, 12413–12430, https://doi.org/10.5194/acp-19-12413-2019,https://doi.org/10.5194/acp-19-12413-2019, 2019
Short summary
Cited articles  
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006. 
Brunekreef, B. and Holgate, S.: Air pollution and health Lancet, 360, 1233–1242, 2002. 
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008. 
Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016. 
Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., and Xu, B.: Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective, Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018, 2018. 
Publications Copernicus
Download
Short summary
We employed Kolmogorov–Zurbenko filtering and WRF-CMAQ to quantify the relative contribution of meteorological variations and emission reduction to PM2.5 reduction in Beijing from 2013 to 2017, which is crucial to evaluate the Five-year Clean Air Action Plan. Both models suggested that despite favourable meteorological conditions, the control of anthropogenic emissions accounted for around 80 % of PM2.5 reduction in Beijing. Therefore, such a long-term clean air plan should be continued.
We employed Kolmogorov–Zurbenko filtering and WRF-CMAQ to quantify the relative contribution of...
Citation