Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 21
Atmos. Chem. Phys., 19, 13367–13381, 2019
https://doi.org/10.5194/acp-19-13367-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 13367–13381, 2019
https://doi.org/10.5194/acp-19-13367-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Oct 2019

Research article | 30 Oct 2019

The mechanisms and meteorological drivers of the summertime ozone–temperature relationship

William C. Porter and Colette L. Heald
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (16 Jul 2019)  Author's response
ED: Referee Nomination & Report Request started (01 Aug 2019) by Federico Fierli
RR by Anonymous Referee #1 (15 Aug 2019)
RR by Anonymous Referee #2 (13 Sep 2019)
ED: Publish subject to technical corrections (19 Sep 2019) by Federico Fierli
AR by William Porter on behalf of the Authors (25 Sep 2019)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
In this paper we explore the connection between changes in surface temperature and changes in ozone pollution. While explanations for this connection have been proposed in the past, we attempt to better quantify them using models and statistics. We find that some of the most commonly cited mechanisms, including biogenic emissions and temperature-dependent chemical processes, can explain less than half of the O3T correlation. Meteorology is identified as the most likely driver for the remainder.
In this paper we explore the connection between changes in surface temperature and changes in...
Citation