Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 19, issue 20
Atmos. Chem. Phys., 19, 12935–12951, 2019
https://doi.org/10.5194/acp-19-12935-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 12935–12951, 2019
https://doi.org/10.5194/acp-19-12935-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Oct 2019

Research article | 18 Oct 2019

Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model

Hyun S. Kim et al.
Related authors  
Development of Korean Air Quality Prediction System version 1 (KAQPS v1): an operational air quality prediction system with focuses on practical issues
Kyunghwa Lee, Jinhyeok Yu, Sojin Lee, Mieun Park, Hun Hong, Soon Young Park, Myungje Choi, Jhoon Kim, Younha Kim, Jung-Hun Woo, Sang-Woo Kim, and Chul H. Song
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-169,https://doi.org/10.5194/gmd-2019-169, 2019
Manuscript under review for GMD
Short summary
GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Brent Holben, Thomas F. Eck, Zhengqiang Li, and Chul H. Song
Atmos. Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-2018,https://doi.org/10.5194/amt-11-385-2018, 2018
Short summary
GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Ukkyo Jeong, Woogyung Kim, Hyunkee Hong, Brent Holben, Thomas F. Eck, Chul H. Song, Jae-Hyun Lim, and Chang-Keun Song
Atmos. Meas. Tech., 9, 1377–1398, https://doi.org/10.5194/amt-9-1377-2016,https://doi.org/10.5194/amt-9-1377-2016, 2016
Short summary
GIST-PM-Asia v1: development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia
S. Lee, C. H. Song, R. S. Park, M. E. Park, K. M. Han, J. Kim, M. Choi, Y. S. Ghim, and J.-H. Woo
Geosci. Model Dev., 9, 17–39, https://doi.org/10.5194/gmd-9-17-2016,https://doi.org/10.5194/gmd-9-17-2016, 2016
Short summary
A comparison study between CMAQ-simulated and OMI-retrieved NO2 columns over East Asia for evaluation of NOx emission fluxes of INTEX-B, CAPSS, and REAS inventories
K. M. Han, S. Lee, L. S. Chang, and C. H. Song
Atmos. Chem. Phys., 15, 1913–1938, https://doi.org/10.5194/acp-15-1913-2015,https://doi.org/10.5194/acp-15-1913-2015, 2015
Related subject area  
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The role of aerosol–radiation–cloud interactions in linking anthropogenic pollution over southern west Africa and dust emission over the Sahara
Laurent Menut, Paolo Tuccella, Cyrille Flamant, Adrien Deroubaix, and Marco Gaetani
Atmos. Chem. Phys., 19, 14657–14676, https://doi.org/10.5194/acp-19-14657-2019,https://doi.org/10.5194/acp-19-14657-2019, 2019
Short summary
Significant climate impacts of aerosol changes driven by growth in energy use and advances in emission control technology
Alcide Zhao, Massimo A. Bollasina, Monica Crippa, and David S. Stevenson
Atmos. Chem. Phys., 19, 14517–14533, https://doi.org/10.5194/acp-19-14517-2019,https://doi.org/10.5194/acp-19-14517-2019, 2019
Short summary
Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter
Yueming Cheng, Tie Dai, Daisuke Goto, Nick A. J. Schutgens, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 19, 13445–13467, https://doi.org/10.5194/acp-19-13445-2019,https://doi.org/10.5194/acp-19-13445-2019, 2019
Short summary
Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces
Roope Halonen, Evgeni Zapadinsky, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 19, 13355–13366, https://doi.org/10.5194/acp-19-13355-2019,https://doi.org/10.5194/acp-19-13355-2019, 2019
Short summary
Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea
Steve Hung Lam Yim, Yefu Gu, Matthew A. Shapiro, and Brent Stephens
Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019,https://doi.org/10.5194/acp-19-13309-2019, 2019
Short summary
Cited articles  
Abdul-Wahab, S. A. and Al-Alawi, S. M.: Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks, Environ. Modell. Softw., 17, 219–228, 2002. 
Amarasinghe, K., Marino, D. L., and Manic, M: Deep neural networks for energy load forecasting, Proceedings of the 26th IEEE International Symposium on Industrial Electronics, 19–21 June, Scotland, UK, 1483–1488, 2017. 
Ayinde, B. O., Inanc, T., and Zurada, J. M.: On Correlation of Features Extracted by Deep Neural Networks, arXiv:1901.10900v1, 2019. 
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Networ., 5, 157–166, 1994. 
Berge, E., Huang, H.-C., Chang, J., and Liu, T.-H.: A study of importance of initial conditions for photochemical oxidant modeling, J. Geophys. Res.-Atmos., 106, 1347–1363, 2001. 
Publications Copernicus
Download
Short summary
In this study, a deep recurrent neural network system based on a long short-term memory (LSTM) model was developed for daily PM10 and PM2.5 predictions in South Korea. In general, the accuracies of the LSTM-based predictions were superior to the 3-D CTM-based predictions. Based on this, we concluded that the LSTM-based system could be applied to daily operational PM forecasts in South Korea. We expect that similar AI systems can be applied to the predictions of other atmospheric pollutants.
In this study, a deep recurrent neural network system based on a long short-term memory (LSTM)...
Citation