Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 19
Atmos. Chem. Phys., 19, 12091–12119, 2019
https://doi.org/10.5194/acp-19-12091-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 12091–12119, 2019
https://doi.org/10.5194/acp-19-12091-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Sep 2019

Research article | 30 Sep 2019

Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis

Igor B. Konovalov et al.

Viewed

Total article views: 854 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
557 284 13 854 12 17
  • HTML: 557
  • PDF: 284
  • XML: 13
  • Total: 854
  • BibTeX: 12
  • EndNote: 17
Views and downloads (calculated since 03 Jun 2019)
Cumulative views and downloads (calculated since 03 Jun 2019)

Viewed (geographical distribution)

Total article views: 695 (including HTML, PDF, and XML) Thereof 682 with geography defined and 13 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 11 Jul 2020
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Biomass burning (BB) aerosol has a strong impact on air quality and climate, but a wide diversity of observed effects of its atmospheric transformations (aging) is not yet sufficiently understood and thus not addressed in models. Based on the results of numerical experiments involving a box model, we show that part of this diversity can be due to the factors associated with the intrinsic nonlinearity of the processes governing the atmospheric evolution of organic components of BB aerosol.
Biomass burning (BB) aerosol has a strong impact on air quality and climate, but a wide...
Citation