Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 18
Atmos. Chem. Phys., 19, 11985–12006, 2019
https://doi.org/10.5194/acp-19-11985-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 11985–12006, 2019
https://doi.org/10.5194/acp-19-11985-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Sep 2019

Research article | 26 Sep 2019

Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA

Peter J. Marinescu et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Peter Marinescu on behalf of the Authors (16 Aug 2019)  Author's response    Manuscript
ED: Publish as is (24 Aug 2019) by Fangqun Yu
Publications Copernicus
Download
Short summary
We characterized and provided fits for the seasonal aerosol size distributions (7 nm–14  µm diameter) at a North American, long–term surface site (SGP), which can be applied to models. Key cycles on timescales of several hours to weeks were also assessed using power spectra for various aerosol size ranges. One key finding is the consistent presence of diurnal cycles in the smallest particles in each season, providing insights into the formation and roles of new particle formation at SGP.
We characterized and provided fits for the seasonal aerosol size distributions (7 nm–14  µm...
Citation