Articles | Volume 19, issue 18
https://doi.org/10.5194/acp-19-11865-2019
https://doi.org/10.5194/acp-19-11865-2019
Research article
 | 
24 Sep 2019
Research article |  | 24 Sep 2019

Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent

Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Ravi Shankar Nanjundiah, Krishnaswamy Krishna Moorthy, Sivaramakrishnan Lakshmivarahan, and Surendran Nair Suresh Babu

Related authors

Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022,https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 2: Clear-sky direct shortwave radiative forcing using multi-year assimilated data over the Indian subcontinent
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020,https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024,https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024,https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024,https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
An observation-constrained estimation of brown carbon aerosol direct radiative effects
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024,https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024,https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary

Cited articles

Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L., Qian, Y., Chung, C., Ramanathan, V., and Carmichael, G.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615, 2008. a, b, c
Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal station in India, Geophys. Res. Lett., 29, 13-1–13-4, https://doi.org/10.1029/2002GL015662, 2002. a
Babu, S. S., Moorthy, K. K., and Satheesh, S.: Aerosol black carbon over Arabian Sea during intermonsoon and summer monsoon seasons, Geophys. Res. Lett., 31, L06104, https://doi.org/10.1029/2003GL018716, 2004. a, b
Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S., Vajja, D. P., Srinivasan, S., and Kumar, V.: Free tropospheric black carbon aerosol measurements using high altitude balloon: do BC layers build “their own homes” up in the atmosphere?, Geophys. Res. Lett., 38, L08803, https://doi.org/10.1029/2011GL046654, 2011. a, b, c, d
Babu, S. S., Manoj, M., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., Satheesh, S., Niranjan, K., Ramagopal, K., Bhuyan, P., and Singh, D.: Trends in aerosol optical depth over Indian region: Potential causes and impact indicators, J. Geophys. Res.-Atmos., 118, 11794–11806, https://doi.org/10.1002/2013JD020507, 2013. a, b, c, d
Short summary
We have developed quality-enhanced, gridded datasets for aerosol optical depth (AOD) and absorption AOD by assimilating highly accurate measurements from the dense network of ground-based stations, with respective satellite-retrieved datasets. The assimilated datasets demonstrate improved accuracy and reduced uncertainties as compared to respective satellite products. Thus, these assimilated products emerge as important tools to improve the accuracy of climate impact assessment of aerosols.
Altmetrics
Final-revised paper
Preprint